Home
Class 12
MATHS
The solution of sin^(-1)x-sin^(-1)2x=pm(...

The solution of `sin^(-1)x-sin^(-1)2x=pm(pi)/(3)` is

A

`pm(1)/(3)`

B

`pm(1)/(4)`

C

`pm(sqrt(3))/(2)`

D

`pm(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} x - \sin^{-1} 2x = \pm \frac{\pi}{3} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin^{-1} x - \sin^{-1} 2x = \pm \frac{\pi}{3} \] We can express \( \frac{\pi}{3} \) in terms of sine: \[ \frac{\pi}{3} = \sin^{-1} \left( \frac{\sqrt{3}}{2} \right) \] Thus, we can rewrite the equation as: \[ \sin^{-1} x - \sin^{-1} 2x = \sin^{-1} \left( \frac{\sqrt{3}}{2} \right) \quad \text{or} \quad \sin^{-1} x - \sin^{-1} 2x = -\sin^{-1} \left( \frac{\sqrt{3}}{2} \right) \] ### Step 2: Apply the sine difference formula Using the identity for the difference of inverse sine functions: \[ \sin^{-1} a - \sin^{-1} b = \sin^{-1 \left( a \sqrt{1 - b^2} - b \sqrt{1 - a^2} \right)} \] we can set \( a = x \) and \( b = 2x \): \[ \sin^{-1} x - \sin^{-1} 2x = \sin^{-1} \left( x \sqrt{1 - (2x)^2} - 2x \sqrt{1 - x^2} \right) \] ### Step 3: Set the expressions equal Now we have: \[ \sin^{-1} \left( x \sqrt{1 - 4x^2} - 2x \sqrt{1 - x^2} \right) = \sin^{-1} \left( \frac{\sqrt{3}}{2} \right) \] This implies: \[ x \sqrt{1 - 4x^2} - 2x \sqrt{1 - x^2} = \frac{\sqrt{3}}{2} \] or \[ x \sqrt{1 - 4x^2} - 2x \sqrt{1 - x^2} = -\frac{\sqrt{3}}{2} \] ### Step 4: Solve the first equation Let’s solve the first equation: \[ x \sqrt{1 - 4x^2} - 2x \sqrt{1 - x^2} = \frac{\sqrt{3}}{2} \] Rearranging gives: \[ x \sqrt{1 - 4x^2} = \frac{\sqrt{3}}{2} + 2x \sqrt{1 - x^2} \] Squaring both sides: \[ x^2 (1 - 4x^2) = \left(\frac{\sqrt{3}}{2} + 2x \sqrt{1 - x^2}\right)^2 \] ### Step 5: Expand and simplify Expanding the right side: \[ x^2 - 4x^4 = \frac{3}{4} + 2\sqrt{3}x\sqrt{1 - x^2} + 4x^2(1 - x^2) \] This leads to a quadratic equation in \( x \). ### Step 6: Solve the quadratic equation After simplification, we will arrive at a quadratic equation: \[ 4x^4 + 3x^2 - 1 = 0 \] Let \( y = x^2 \): \[ 4y^2 + 3y - 1 = 0 \] Using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 4 \cdot (-1)}}{2 \cdot 4} \] Calculating gives: \[ y = \frac{-3 \pm \sqrt{9 + 16}}{8} = \frac{-3 \pm 5}{8} \] Thus, \( y = \frac{1}{4} \) or \( y = -1 \) (not valid since \( y = x^2 \geq 0 \)). ### Step 7: Find values of \( x \) Since \( y = x^2 = \frac{1}{4} \): \[ x = \pm \frac{1}{2} \] ### Final Answer The solutions to the original equation are: \[ x = \frac{1}{2} \quad \text{and} \quad x = -\frac{1}{2} \]

To solve the equation \( \sin^{-1} x - \sin^{-1} 2x = \pm \frac{\pi}{3} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin^{-1} x - \sin^{-1} 2x = \pm \frac{\pi}{3} \] We can express \( \frac{\pi}{3} \) in terms of sine: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

STATEMENT-1 : The solution of sin^-1 6x+sin^-1 6sqrt3x=pi/2 is , x= +- 1/12. and STATEMENT - 2 As, sin^-1 x is defined for |x| <= 1.

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=

The number of solution (s) of the equation sin^(- 1)(1-x)-2sin^(- 1)x=pi/2 is/are

Solve for x: sin^(-1)(1-x)-2sin^(-1)x=pi/2

solve :sin^-1x+sin^-1 2x=pi/3

solve :sin^-1x+sin^-1 2x=pi/3

If a le 1/32 then the number of solution of (sin^(-1) x)^(3) +(cos^(-1) x)^(3) = a pi^(3) is