Home
Class 12
MATHS
Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(...

Let `f(x)=sin^(-1)((2x)/(1+x^(2)))` and `g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1))`. Then tha value of f(10)-g(100) is equal to

A

`pi-2(tan^(-1)(10)+tan^(-1)(100))`

B

0

C

`2(tan^(-1)(100)-tan^(-1)(10))`

D

`2(tan^(-1)(10)-tan^(-1)(100))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( f(10) - g(100) \) where: \[ f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) \] \[ g(x) = \cos^{-1}\left(\frac{x^2-1}{x^2+1}\right) \] ### Step 1: Evaluate \( f(10) \) Using the known formula for \( \sin^{-1} \left( \frac{2x}{1+x^2} \right) \): \[ f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) = \tan^{-1}(x) \quad \text{for } x \geq 0 \] Thus, we have: \[ f(10) = \tan^{-1}(10) \] ### Step 2: Evaluate \( g(100) \) Using the known formula for \( \cos^{-1} \left( \frac{x^2-1}{x^2+1} \right) \): \[ g(x) = \cos^{-1}\left(\frac{x^2-1}{x^2+1}\right) = \frac{\pi}{2} - \tan^{-1}(x) \quad \text{for } x \geq 0 \] Thus, we have: \[ g(100) = \frac{\pi}{2} - \tan^{-1}(100) \] ### Step 3: Calculate \( f(10) - g(100) \) Now we can substitute our results into the expression \( f(10) - g(100) \): \[ f(10) - g(100) = \tan^{-1}(10) - \left(\frac{\pi}{2} - \tan^{-1}(100)\right) \] This simplifies to: \[ f(10) - g(100) = \tan^{-1}(10) - \frac{\pi}{2} + \tan^{-1}(100) \] ### Step 4: Combine the terms Using the identity \( \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right) \) when \( ab < 1 \): Here, \( 10 \cdot 100 = 1000 > 1 \), so we can write: \[ \tan^{-1}(10) + \tan^{-1}(100) = \tan^{-1}\left(\frac{10 + 100}{1 - 10 \cdot 100}\right) + \pi \] Thus, we have: \[ f(10) - g(100) = \tan^{-1}(10) + \tan^{-1}(100) - \frac{\pi}{2} = \tan^{-1}\left(\frac{110}{-9999}\right) + \pi \] ### Final Result Since \( \tan^{-1}(x) + \tan^{-1}(y) - \frac{\pi}{2} \) results in \( \tan^{-1}\left(\frac{110}{-9999}\right) + \pi \), we can conclude: \[ f(10) - g(100) = 2 \] ### Conclusion Thus, the value of \( f(10) - g(100) \) is \( 2 \). ---

To solve the problem, we need to evaluate \( f(10) - g(100) \) where: \[ f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) \] \[ g(x) = \cos^{-1}\left(\frac{x^2-1}{x^2+1}\right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=(4cos^4x-2cos2x-1/2cos4x-x^7)^(1/7) then the value of g(g(100)) is equal to

If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and g(x)=cos^(-1)((1-x^2)/(1+x^2)) then lim_(x->a) (f(x)-f(a))/(g(x)-g(a))

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 ltalt 1/2 is :

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of f(3) is

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of g(0) is

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

If the function f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1)(x), then the value of g'((-7)/(6)) equals :

Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is