Home
Class 12
MATHS
Solve tan^(-1) x + cot^(-1) (-|x|) = 2 t...

Solve `tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x`

A

4

B

3

C

2

D

1

Text Solution

Verified by Experts

The correct Answer is:
C

When x lt 0, wwe have `tan^(-1)(6x)=(pi)/(4)`
`rArr x =(1)/(6)`, which is not possible
When `x ge 0`, we have `(pi)/(4)=tan^(-1)(6x)-tan^(-1)(x)`
`rArr (6x-x)/(1+6x^(2))=1`
`rArr x=(1)/(2),(1)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan^(-1) x gt cot^(-1) x

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3

Solve : tan^(-1)( 1/2) = cot^(-1) x + tan^(-1)( 1/7)

Solve: 5tan^(-1)x+3cot^(-1)x=2pi

Solve tan^(-1) x + sin^(-1) x = tan^(-1) 2x

Solve: tan^(-1)x+2cot^(-1)x=(2pi)/3

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3x