Home
Class 12
MATHS
Solve: sin^(-1)(3x)/5+sin^(-1)(4x)/5=sin...

Solve: `sin^(-1)(3x)/5+sin^(-1)(4x)/5=sin^(-1)x`

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
D

`"sin"^(-1)(3x)/(5)+"sin"^(-1)(4x)/(5)=sin^(-1)x`
`rArr sin^(-1)((3x)/(5)sqrt(1-(16x^(2))/(25))+(4x)/(5)sqrt(1-(9x^(2))/(25)))=sin^(-1)x`
`rarr (3x)/(5)(sqrt(25-16x^(2)))/(5)+(4x)/(5)(sqrt(25-9x^(2)))/(5)=x`
`rArr x = 0` or `3sqrt(25-16x^(2))+4sqrt(25-9x^(2))=25`
Now `sqrt(225-144x^(2))+sqrt(400-144x^(2))=25` .....(1)
`rArr (175)/(sqrt(400-144x^(2))-sqrt(225-144x^(2)))=25`
`rArr sqrt(400-144x^(2))-sqrt(225-144x^(2))=7` ....(2)
From (1) and (2), `sqrt(400-144x^(2))=16`
`rArr 400-144x^(2)=256`
`rArr x^(2)=1`
`rArr x = pm 1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equations: sin^(-1)((3x)/5)+sin^(-1)((4x)/5)=sin^(-1)x sin^(-1)6x+sin^(-1)6sqrt(3)x=pi/2

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

sin^(-1)(3x)/5+sin^(-1)(4x)/5=sin^(-1)x , then roots of the equation are- a. 0 b. 1 c. -1\ d. -2

Solve sin^(-1)x > -1

Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)