Home
Class 12
MATHS
The expression sum(n=1)^(oo)cot^(-1)(n^(...

The expression `sum_(n=1)^(oo)cot^(-1)(n^(2)-3n+3)` simplifies to

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`(3pi)/(4)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\sum_{n=1}^{\infty} \cot^{-1}(n^2 - 3n + 3)\), we will follow these steps: ### Step 1: Rewrite the Cotangent Inverse We start with the expression: \[ \sum_{n=1}^{\infty} \cot^{-1}(n^2 - 3n + 3) \] Using the identity \(\cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\), we can rewrite the expression as: \[ \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{1}{n^2 - 3n + 3}\right) \] ### Step 2: Factor the Quadratic Expression Next, we simplify the quadratic expression in the denominator: \[ n^2 - 3n + 3 = (n - 1)(n - 2) + 1 \] This can be rewritten as: \[ n^2 - 3n + 3 = (n - 1)(n - 2) + 1 \] ### Step 3: Use the Identity for Tangent Inverse We can express \(\tan^{-1}\left(\frac{1}{(n-1)(n-2) + 1}\right)\) in terms of the difference of two tangent inverses: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x-y}{1+xy}\right) \] We can set \(x = n-1\) and \(y = n-2\): \[ \tan^{-1}(n-1) - \tan^{-1}(n-2) \] ### Step 4: Rewrite the Sum Thus, the sum can be rewritten as: \[ \sum_{n=1}^{\infty} \left(\tan^{-1}(n-1) - \tan^{-1}(n-2)\right) \] ### Step 5: Recognize the Telescoping Nature This is a telescoping series, where most terms will cancel out: \[ = \tan^{-1}(0) - \lim_{n \to \infty} \tan^{-1}(n-2) \] As \(n\) approaches infinity, \(\tan^{-1}(n-2)\) approaches \(\frac{\pi}{2}\). ### Step 6: Final Calculation Thus, we have: \[ = 0 - \frac{\pi}{2} = -\frac{\pi}{2} \] ### Conclusion The expression simplifies to: \[ \sum_{n=1}^{\infty} \cot^{-1}(n^2 - 3n + 3) = \frac{3\pi}{4} \]

To solve the expression \(\sum_{n=1}^{\infty} \cot^{-1}(n^2 - 3n + 3)\), we will follow these steps: ### Step 1: Rewrite the Cotangent Inverse We start with the expression: \[ \sum_{n=1}^{\infty} \cot^{-1}(n^2 - 3n + 3) \] Using the identity \(\cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\), we can rewrite the expression as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

sum_(n=1) ^(oo) (1)/((2n-1)!)=

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

The value of sum_(n=3)^(oo)(1)/(n^(5) - 5n^(3) +4 n) is equal to - (a) (1)/(120) (b) (1 )/(96) (c) (1)/(24) (d) (1)/(144)

sum_(n=1)^(oo) ((log_ex)^(2n-1))/((2n-1)!)=

sum_(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

The value of sum_(n=1)^oo\ (n^2+1)/((n+2)n!) is