Home
Class 12
MATHS
The value of sum sum(n=1)^(oo)cot^(-1)((...

The value of sum `sum_(n=1)^(oo)cot^(-1)(((n^(2)+2n)(n^(2)+2n+1)+1)/(2n+2))` is equal to

A

`cos^(-1)((1)/(sqrt(5)))`

B

`sec^(-1)((sqrt(5))/(2))`

C

`sin^(-1)((1)/(sqrt(5)))`

D

`cot^(-1)(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given summation problem, we need to evaluate the infinite series: \[ \sum_{n=1}^{\infty} \cot^{-1}\left(\frac{(n^2 + 2n)(n^2 + 2n + 1) + 1}{2n + 2}\right) \] ### Step 1: Simplify the Argument of Cotangent Inverse First, we simplify the argument of the cotangent inverse: \[ \cot^{-1}\left(\frac{(n^2 + 2n)(n^2 + 2n + 1) + 1}{2n + 2}\right) \] Let \( x = n^2 + 2n \). Then, we can rewrite the expression as: \[ \cot^{-1}\left(\frac{x(x + 1) + 1}{2(n + 1)}\right) \] Calculating \( x(x + 1) + 1 \): \[ x(x + 1) + 1 = n^4 + 2n^3 + n^2 + 1 \] Thus, we have: \[ \cot^{-1}\left(\frac{n^4 + 2n^3 + n^2 + 1}{2(n + 1)}\right) \] ### Step 2: Rewrite the Expression We can rewrite the cotangent inverse using properties of inverse trigonometric functions: \[ \cot^{-1}(a) = \tan^{-1}\left(\frac{1}{a}\right) \] Thus, we can express: \[ \cot^{-1}\left(\frac{n^4 + 2n^3 + n^2 + 1}{2(n + 1)}\right) = \tan^{-1}\left(\frac{2(n + 1)}{n^4 + 2n^3 + n^2 + 1}\right) \] ### Step 3: Analyze the Series Next, we analyze the series: \[ \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{2(n + 1)}{n^4 + 2n^3 + n^2 + 1}\right) \] ### Step 4: Find the Limit To find the limit of the series, we can use the properties of the inverse tangent function and its behavior as \( n \to \infty \): \[ \lim_{n \to \infty} \tan^{-1}\left(\frac{2(n + 1)}{n^4 + 2n^3 + n^2 + 1}\right) \to 0 \] ### Step 5: Evaluate the Series The series converges, and we can evaluate it using the telescoping nature of the terms: \[ \sum_{n=1}^{\infty} \left(\tan^{-1}(n + 2) - \tan^{-1}(n)\right) \] This results in: \[ \lim_{N \to \infty} \left(\tan^{-1}(N + 2) - \tan^{-1}(1)\right) = \frac{\pi}{2} - \tan^{-1}(1) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \] ### Final Answer Thus, the value of the sum is: \[ \frac{\pi}{4} \]

To solve the given summation problem, we need to evaluate the infinite series: \[ \sum_{n=1}^{\infty} \cot^{-1}\left(\frac{(n^2 + 2n)(n^2 + 2n + 1) + 1}{2n + 2}\right) \] ### Step 1: Simplify the Argument of Cotangent Inverse ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

sum_(n=1) ^(oo) (1)/((2n-1)!)=

The value of sum_(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

sum_(n=1)^(oo) (2n)/(n!)=

The value of sum_(n=1)^oo\ (n^2+1)/((n+2)n!) is

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

sum_(n=1)^7(n(n+1)(2n+1))/4 is equal to

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

The sum of sum_(n=1)^(oo) ""^(n)C_(2) . (3^(n-2))/(n!) equal