Home
Class 12
MATHS
Solve the following equations: si...

Solve the following equations: `sin[2cos^(-1)"{"cot"("2tan^(-1)x"}]"=0`

A

`pm1`

B

`1pm sqrt(2)`

C

`-1pm sqrt(2)`

D

`pm sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin\left(2 \cos^{-1}\left(\cot\left(2 \tan^{-1}(x)\right)\right)\right) = 0 \), we will follow these steps: ### Step 1: Set the equation for sine Since \( \sin(y) = 0 \) when \( y = n\pi \) for any integer \( n \), we can set: \[ 2 \cos^{-1}\left(\cot\left(2 \tan^{-1}(x)\right)\right) = n\pi \] ### Step 2: Divide by 2 Dividing both sides by 2 gives: \[ \cos^{-1}\left(\cot\left(2 \tan^{-1}(x)\right)\right) = \frac{n\pi}{2} \] ### Step 3: Determine valid values for \( n \) The range of \( \cos^{-1}(x) \) is \( [0, \pi] \). Therefore, \( \frac{n\pi}{2} \) must also lie within this range. This gives us the possible integer values for \( n \): - \( n = 0 \) gives \( 0 \) - \( n = 1 \) gives \( \frac{\pi}{2} \) - \( n = 2 \) gives \( \pi \) Thus, \( n \) can be \( 0, 1, \) or \( 2 \). ### Step 4: Case 1: \( n = 0 \) For \( n = 0 \): \[ \cos^{-1}\left(\cot\left(2 \tan^{-1}(x)\right)\right) = 0 \] This implies: \[ \cot\left(2 \tan^{-1}(x)\right) = \cos(0) = 1 \] Thus: \[ 2 \tan^{-1}(x) = \tan^{-1}(1) \implies 2 \tan^{-1}(x) = \frac{\pi}{4} \] This leads to: \[ \tan^{-1}(x) = \frac{\pi}{8} \implies x = \tan\left(\frac{\pi}{8}\right) \] ### Step 5: Case 2: \( n = 1 \) For \( n = 1 \): \[ \cos^{-1}\left(\cot\left(2 \tan^{-1}(x)\right)\right) = \frac{\pi}{2} \] This implies: \[ \cot\left(2 \tan^{-1}(x)\right) = \cos\left(\frac{\pi}{2}\right) = 0 \] Thus: \[ 2 \tan^{-1}(x) = \frac{\pi}{2} \implies \tan^{-1}(x) = \frac{\pi}{4} \implies x = 1 \] ### Step 6: Case 3: \( n = 2 \) For \( n = 2 \): \[ \cos^{-1}\left(\cot\left(2 \tan^{-1}(x)\right)\right) = \pi \] This implies: \[ \cot\left(2 \tan^{-1}(x)\right) = \cos(\pi) = -1 \] Thus: \[ 2 \tan^{-1}(x) = \tan^{-1}(-1) \implies 2 \tan^{-1}(x) = -\frac{\pi}{4} \] This leads to: \[ \tan^{-1}(x) = -\frac{\pi}{8} \implies x = \tan\left(-\frac{\pi}{8}\right) = -\tan\left(\frac{\pi}{8}\right) \] ### Final Solutions The solutions for \( x \) from the three cases are: 1. \( x = \tan\left(\frac{\pi}{8}\right) \) 2. \( x = 1 \) 3. \( x = -\tan\left(\frac{\pi}{8}\right) \) ### Summary of Solutions Thus, the final solutions are: \[ x = \tan\left(\frac{\pi}{8}\right), \quad x = 1, \quad x = -\tan\left(\frac{\pi}{8}\right) \]

To solve the equation \( \sin\left(2 \cos^{-1}\left(\cot\left(2 \tan^{-1}(x)\right)\right)\right) = 0 \), we will follow these steps: ### Step 1: Set the equation for sine Since \( \sin(y) = 0 \) when \( y = n\pi \) for any integer \( n \), we can set: \[ 2 \cos^{-1}\left(\cot\left(2 \tan^{-1}(x)\right)\right) = n\pi \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: sin[2\ cos^(-1){cot(2\ tan^(-1)x)}]=0

Solve the following equation: 2sin^2x+sqrt(3)cos x+1=0

Solve the following equation: sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the following equation: sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the following equation for x : "cos"(tan^(-1)x)=sin(cot^(-1)3/4)

Solve the following equations : sin^(-1)(x^(2)-2x+3)+cos^(-1)(x^(2)-x)=(pi)/2

Solve the following equation for x : cos(tan^-1 x) = sin(cot^-1(3/4))

Solve the following equation for x : cos(tan^-1 x) = sin(cot^-1(3/4))

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

Solve the following equations: (i) sin^(8)x - cos^(8)x=1 (ii) sin^(10)x - cot^(8)x=1