Home
Class 12
MATHS
Let x1,x2,x3,x4 be four non zero numbers...

Let `x_1,x_2,x_3,x_4` be four non zero numbers satisfying the equation `tan^-1 (a/x)+tan^-1(b/x)+tan^-1(c/x)+tan^-1(d/x)=pi/2` then which ofthe following relation(s) hold good?

A

`x_(1)+x_(2)+x_(3)+x_(4)=a+b+c+d`

B

`(1)/(x_(1))+(1)/(x_(2))+(1)/(x_(3))+(1)/(x_(4))=0`

C

`x_(1)x_(2)x_(3)x_(4)=abcd`

D

`(x_(2)+x_(3)+x_(4))(x_(3)+x_(4)+x_(1))(x_(1)+x_(2)+x_(3))=abcd`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation: \[ \tan^{-1}\left(\frac{a}{x}\right) + \tan^{-1}\left(\frac{b}{x}\right) + \tan^{-1}\left(\frac{c}{x}\right) + \tan^{-1}\left(\frac{d}{x}\right) = \frac{\pi}{2} \] ### Step 1: Use the property of inverse tangent We know that: \[ \tan^{-1}(u) + \tan^{-1}(v) = \tan^{-1}\left(\frac{u + v}{1 - uv}\right) \quad \text{if } uv < 1 \] We can apply this property to the first two terms: Let \( u = \frac{a}{x} \) and \( v = \frac{b}{x} \): \[ \tan^{-1}\left(\frac{a}{x}\right) + \tan^{-1}\left(\frac{b}{x}\right) = \tan^{-1}\left(\frac{\frac{a}{x} + \frac{b}{x}}{1 - \frac{a}{x} \cdot \frac{b}{x}}\right) = \tan^{-1}\left(\frac{a + b}{x} \cdot \frac{x^2}{x^2 - ab}\right) \] ### Step 2: Combine the next two terms Now, we apply the same property to the last two terms: Let \( u = \frac{c}{x} \) and \( v = \frac{d}{x} \): \[ \tan^{-1}\left(\frac{c}{x}\right) + \tan^{-1}\left(\frac{d}{x}\right) = \tan^{-1}\left(\frac{\frac{c}{x} + \frac{d}{x}}{1 - \frac{c}{x} \cdot \frac{d}{x}}\right) = \tan^{-1}\left(\frac{c + d}{x} \cdot \frac{x^2}{x^2 - cd}\right) \] ### Step 3: Combine all terms Now we combine both results: \[ \tan^{-1}\left(\frac{a + b}{x} \cdot \frac{x^2}{x^2 - ab}\right) + \tan^{-1}\left(\frac{c + d}{x} \cdot \frac{x^2}{x^2 - cd}\right) = \frac{\pi}{2} \] Using the property of inverse tangent again, we have: \[ \tan^{-1}\left(\frac{\frac{a + b}{x} \cdot \frac{x^2}{x^2 - ab} + \frac{c + d}{x} \cdot \frac{x^2}{x^2 - cd}}{1 - \left(\frac{a + b}{x} \cdot \frac{x^2}{x^2 - ab}\right) \cdot \left(\frac{c + d}{x} \cdot \frac{x^2}{x^2 - cd}\right)}\right) = \frac{\pi}{2} \] ### Step 4: Set the denominator to zero For the above equation to hold true, the denominator must be zero: \[ 1 - \left(\frac{(a + b)(c + d)}{(x^2 - ab)(x^2 - cd)}\right) = 0 \] This leads us to: \[ (a + b)(c + d) = (x^2 - ab)(x^2 - cd) \] ### Step 5: Expand and rearrange Expanding the right-hand side gives: \[ x^4 - (ab + cd)x^2 + abcd = (a + b)(c + d) \] This leads to a polynomial equation in \( x \): \[ x^4 - (ab + cd)x^2 + (abcd - (a + b)(c + d)) = 0 \] ### Step 6: Analyze the roots This is a quartic equation, which can have four roots \( x_1, x_2, x_3, x_4 \). Using Vieta's formulas, we can find: 1. The sum of the roots \( x_1 + x_2 + x_3 + x_4 = 0 \) (since the coefficient of \( x^3 \) is zero). 2. The product of the roots \( x_1 x_2 x_3 x_4 = abcd \). ### Conclusion Thus, the relations that hold good are: 1. \( x_1 + x_2 + x_3 + x_4 = 0 \) 2. \( x_1 x_2 x_3 x_4 = abcd \)

To solve the problem, we need to analyze the given equation: \[ \tan^{-1}\left(\frac{a}{x}\right) + \tan^{-1}\left(\frac{b}{x}\right) + \tan^{-1}\left(\frac{c}{x}\right) + \tan^{-1}\left(\frac{d}{x}\right) = \frac{\pi}{2} \] ### Step 1: Use the property of inverse tangent ...
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Solve the equation: tan^-1(2x)+tan^-1 {(3x)} =pi/4

If tan x + tan 2x + tan 3x = 0 then which of the following can hold good ?

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x