Home
Class 12
MATHS
Which of the following is/are true ?...

Which of the following is/are true ?

A

`"tan"^(-1)(1)/(3)=(1)/(2)"sin"^(-1)(3)/(5)`

B

`"tan"^(-1)(1)/(3)=(pi)/(4)-cot^(-1)2`

C

`"tan"^(-1)(1)/(3)=(pi)/(4)-(1)/(2)"cos"^(-1)(4)/(5)`

D

`"tan"^(-1)(1)/(3)=(pi)/(2)-cot^(-1)3`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the statements regarding the inverse trigonometric functions is true, we will analyze each statement step by step. ### Step 1: Evaluate Statement A **Statement A:** \( \tan^{-1}\left(\frac{1}{3}\right) = \frac{1}{2} \sin^{-1}\left(\frac{3}{5}\right) \) 1. Start with the left side: \( \tan^{-1}\left(\frac{1}{3}\right) \). 2. We need to find \( \sin^{-1}\left(\frac{3}{5}\right) \). - In a right triangle, if the opposite side is 3 and the hypotenuse is 5, we can find the adjacent side using the Pythagorean theorem: \[ \text{adjacent} = \sqrt{5^2 - 3^2} = \sqrt{25 - 9} = \sqrt{16} = 4 \] - Therefore, \( \tan(\theta) = \frac{3}{4} \) implies \( \theta = \tan^{-1}\left(\frac{3}{4}\right) \). 3. Now, using the double angle identity for tangent: \[ 2\tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{3}}{1 - \left(\frac{1}{3}\right)^2}\right) = \tan^{-1}\left(\frac{\frac{2}{3}}{\frac{8}{9}}\right) = \tan^{-1}\left(\frac{2 \cdot 9}{3 \cdot 8}\right) = \tan^{-1}\left(\frac{3}{4}\right) \] 4. Thus, \( \tan^{-1}\left(\frac{1}{3}\right) = \frac{1}{2} \sin^{-1}\left(\frac{3}{5}\right) \) is true. ### Step 2: Evaluate Statement B **Statement B:** \( \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4} - \cot^{-1}\left(\frac{1}{2}\right) \) 1. Recall that \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \). 2. Thus, \( \cot^{-1}\left(\frac{1}{2}\right) = \tan^{-1}(2) \). 3. Therefore, we can rewrite the statement as: \[ \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4} - \tan^{-1}(2) \] 4. Using the identity: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] where \( a = \frac{1}{3} \) and \( b = 2 \): \[ \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}(2) = \tan^{-1}\left(\frac{\frac{1}{3} + 2}{1 - \frac{1}{3} \cdot 2}\right) = \tan^{-1}\left(\frac{\frac{1}{3} + \frac{6}{3}}{1 - \frac{2}{3}}\right) = \tan^{-1}\left(\frac{\frac{7}{3}}{\frac{1}{3}}\right) = \tan^{-1}(7) \] 5. Hence, the statement is true. ### Step 3: Evaluate Statement C **Statement C:** \( \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4} - \frac{1}{2} \cos^{-1}\left(\frac{4}{5}\right) \) 1. We know that \( \cos^{-1}(x) + \sin^{-1}(x) = \frac{\pi}{2} \). 2. Thus, \( \cos^{-1}\left(\frac{4}{5}\right) = \frac{\pi}{2} - \sin^{-1}\left(\frac{3}{5}\right) \). 3. Therefore, we can rewrite: \[ \frac{1}{2} \cos^{-1}\left(\frac{4}{5}\right) = \frac{1}{2} \left(\frac{\pi}{2} - \sin^{-1}\left(\frac{3}{5}\right)\right) \] 4. This leads to: \[ \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4} - \frac{1}{4}\pi + \frac{1}{2} \sin^{-1}\left(\frac{3}{5}\right) \] 5. Therefore, this statement is also true. ### Step 4: Evaluate Statement D **Statement D:** \( \tan^{-1}\left(-\frac{1}{3}\right) = \frac{\pi}{2} - \cot^{-1}(3) \) 1. We know that \( \tan^{-1}(-x) = -\tan^{-1}(x) \). 2. Thus, \( \tan^{-1}\left(-\frac{1}{3}\right) = -\tan^{-1}\left(\frac{1}{3}\right) \). 3. Also, \( \cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x) \). 4. Therefore, \( \cot^{-1}(3) = \frac{\pi}{2} - \tan^{-1}(3) \). 5. This means that \( \frac{\pi}{2} - \cot^{-1}(3) = \tan^{-1}(3) \), which does not equal \( -\tan^{-1}\left(\frac{1}{3}\right) \). ### Conclusion - **True Statements:** A, B, C - **False Statement:** D

To determine which of the statements regarding the inverse trigonometric functions is true, we will analyze each statement step by step. ### Step 1: Evaluate Statement A **Statement A:** \( \tan^{-1}\left(\frac{1}{3}\right) = \frac{1}{2} \sin^{-1}\left(\frac{3}{5}\right) \) 1. Start with the left side: \( \tan^{-1}\left(\frac{1}{3}\right) \). 2. We need to find \( \sin^{-1}\left(\frac{3}{5}\right) \). - In a right triangle, if the opposite side is 3 and the hypotenuse is 5, we can find the adjacent side using the Pythagorean theorem: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following is a true?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is a true match?