Home
Class 12
MATHS
In a Delta ABC, if tan.(A)/(2)=(5)/(6), ...

In a `Delta ABC`, if `tan.(A)/(2)=(5)/(6), tan.(B)/(2)=(20)/(37)`, then which of the following is/are correct ?

A

`angle B gt angle C`

B

`angle B lt angle C`

C

`a gt b gt c`

D

`a lt b lt c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the properties of tangent and the relationships between the angles and sides of triangle ABC. ### Step-by-Step Solution: 1. **Given Information**: We have: \[ \tan\left(\frac{A}{2}\right) = \frac{5}{6} \] \[ \tan\left(\frac{B}{2}\right) = \frac{20}{37} \] 2. **Using the Tangent Addition Formula**: We know that: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] We can express \( \tan A \) and \( \tan B \) in terms of \( \tan\left(\frac{A}{2}\right) \) and \( \tan\left(\frac{B}{2}\right) \): \[ \tan A = \frac{2 \tan\left(\frac{A}{2}\right)}{1 - \tan^2\left(\frac{A}{2}\right)} \] \[ \tan B = \frac{2 \tan\left(\frac{B}{2}\right)}{1 - \tan^2\left(\frac{B}{2}\right)} \] 3. **Calculating \( \tan A \) and \( \tan B \)**: First, calculate \( \tan A \): \[ \tan A = \frac{2 \cdot \frac{5}{6}}{1 - \left(\frac{5}{6}\right)^2} = \frac{\frac{10}{6}}{1 - \frac{25}{36}} = \frac{\frac{10}{6}}{\frac{11}{36}} = \frac{10 \cdot 36}{6 \cdot 11} = \frac{60}{11} \] Now, calculate \( \tan B \): \[ \tan B = \frac{2 \cdot \frac{20}{37}}{1 - \left(\frac{20}{37}\right)^2} = \frac{\frac{40}{37}}{1 - \frac{400}{1369}} = \frac{\frac{40}{37}}{\frac{969}{1369}} = \frac{40 \cdot 1369}{37 \cdot 969} = \frac{54760}{35853} \] 4. **Finding \( \tan(A + B) \)**: Now we can find \( \tan(A + B) \): \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Substitute the values of \( \tan A \) and \( \tan B \) into this formula. 5. **Using the Angle Sum Property**: Since \( A + B + C = 180^\circ \), we have: \[ A + B = 180^\circ - C \] Therefore: \[ \tan(A + B) = \cot C \] 6. **Finding \( \tan C \)**: From the relationship \( \tan C = \frac{1}{\tan(A + B)} \), we can find \( \tan C \). 7. **Comparing Angles**: We can compare \( \tan\left(\frac{A}{2}\right) \), \( \tan\left(\frac{B}{2}\right) \), and \( \tan\left(\frac{C}{2}\right) \) to determine the order of angles: - If \( \tan\left(\frac{A}{2}\right) > \tan\left(\frac{B}{2}\right) \), then \( A > B \). - If \( \tan\left(\frac{B}{2}\right) > \tan\left(\frac{C}{2}\right) \), then \( B > C \). 8. **Conclusion**: From the calculations, we can conclude the order of angles and subsequently the order of sides based on the properties of triangles.

To solve the problem, we will use the properties of tangent and the relationships between the angles and sides of triangle ABC. ### Step-by-Step Solution: 1. **Given Information**: We have: \[ \tan\left(\frac{A}{2}\right) = \frac{5}{6} ...
Promotional Banner

Topper's Solved these Questions

  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • STATISTICS

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If in Delta ABC, tan.(A)/(2) = (5)/(6) and tan.( C)/(2)= (2)/(5) , then prove that a, b, and c are in A.P.

In Delta ABC if tan(A/2) tan(B/2) + tan(B/2) tan(C/2) = 2/3 then a+c

In a triangle ABC if tan.(A)/(2)tan.(B)/(2)=(1)/(3) and ab = 4, then the value of c can be

If tan^2alpha-2tan^2beta=1 then which of the following options is correct?

If 2a=2tan10^(@)+tan50^(@), 2b=tan20^(@)+tan50^(@) 2c=2tan10^(@)+tan70^(@), 2d=tan20^(@)+tan70^(@) Then which of the following is/are correct ?

In triangle ABC, let b = 10, c = 10 sqrt(2) and R = 5 sqrt(2) then which of the following are correct

If, in a triangleABC, tan(A/2) =5/6 and tan(C/2) = 2/5 , then:

In any triangle ABC , (tan(A/2)-tan(B/2))/(tan(A/2)+tan(B/2)) is equal to

If in the triangle ABC, "tan"(A)/(2), "tan"(B)/(2) and "tan"(C )/(2) are in harmonic progression then the least value of "cot"^(2)(B)/(2) is equal to :

In DeltaABC , prove that: s^(2).tan(A/2)tan(B/2)tan(C/2)=Delta