Home
Class 12
MATHS
A B C D E is pentagon, prove that v...

`A B C D E` is pentagon, prove that ` vec A B` + ` vec B C` + ` vec C D` + ` vec D E+ vec E A` = ` vec0` ` vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C`

Text Solution

Verified by Experts

`vecR=vec(AB)+vec(AE)+vec(BC)+vec(DC)+vec(ED)+vec(AC)`
`" "=(vec(AB)+vec(B C))+(vec(AE)+vec(ED)+vec(DC))+vec(AC)`
`" "=vec(AC)+vec(AC)+vec(AC)=3vec(AC)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 4|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 5|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 2|1 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

A B C D E is pentagon, prove that vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

ABCDE is a pentagon. Prove that the resultant of force vec A B , vec A E , vec B C , vec D C , vec E D and vec A C ,is 3 vec A C .

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d\ vec C D=c Then\ vec A E= a. vec a+ vec b+ vec c b. 2 vec a+ vec b+ vec c c. vec b+ vec c d. vec a+2 vec b+2 vec c

If A B C D E F is a regular hexagon, them vec A D+ vec E B+ vec F C equals 2 vec A B b. vec0 c. 3 vec A B d. 4 vec A B

A , B , C , D are any four points, prove that vec A Bdot vec C D+ vec B Cdot vec A D+ vec C Adot vec B D=0.

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/(( vec b- vec a)dot( vec d- vec a))+(| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/(( vec b- vec c)dot( vec d- vec c))=0dot

If vec a+vec b+vec c=0 , prove that (vec a xx vec b)=(vec b xx vec c)=(vec c xx vec a)

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec adot vec b+ vec bdot vec c+ vec c dot vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c). vec adot vec b= vec bdot vec c= vec c dot vec a (d). vec axx vec b+ vec bxx vec c+ vec cxx vec a=0