Home
Class 12
MATHS
If 2 vec A C = 3 vec C B , then prove th...

If 2` vec A C` = 3` vec C B` , then prove that 2` vec O A` =3` vec C B` then prove that 2` vec O A` + 3` vec O B` =5` vec O C` where `O` is the origin.

Text Solution

AI Generated Solution

To solve the problem, we need to prove that if \( 2 \vec{A} \vec{C} = 3 \vec{C} \vec{B} \), then \( 2 \vec{O} \vec{A} + 3 \vec{O} \vec{B} = 5 \vec{O} \vec{C} \), where \( O \) is the origin. ### Step-by-Step Solution: 1. **Understand the Given Relation**: We are given that: \[ 2 \vec{A} \vec{C} = 3 \vec{C} \vec{B} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 16|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 17|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 14|1 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

if vec Ao + vec O B = vec B O + vec O C ,than prove that B is the midpoint of AC.

A B C D E is pentagon, prove that vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

If A B C D is a rhombus whose diagonals cut at the origin O , then proved that vec O A+ vec O B+ vec O C+ vec O D =0

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

if vec (AO) + vec (O B) = vec (B O) + vec (O C) ,than prove that B is the midpoint of AC .

If A B C D is a rhombus whose diagonals cut at the origin O , then proved that vec O A+ vec O B+ vec O C+ vec O D+ vec Odot

Statement 1:Let A( vec a),B( vec b)a n dC( vec c) be three points such that vec a=2 hat i+ hat k , vec b=3 hat i- hat j+3 hat ka n d vec c=- hat i+7 hat j-5 hat kdot Then O A B C is a tetrahedron. Statement 2: Let A( vec a),B( vec b)a n dC( vec c) be three points such that vectors vec a , vec ba n d vec c are non-coplanar. Then O A B C is a tetrahedron where O is the origin.

If vec a ,\ vec b ,\ vec c are three mutually perpendicular unit vectors, then prove that | vec a+ vec b+ vec c|=sqrt(3)

If vec A O+ vec O B= vec B O+ vec O C , prove that A , B , C are collinear points.