Home
Class 12
MATHS
If in parallelogram ABCD, diagonal vecto...

If in parallelogram ABCD, diagonal vectors are `vec(AC)=2hati+3hatj+4hatk` and `vec(BD)=-6hati+7hatj-2hatk`, then find the adjacent side vectors `vec(AB) and vec(AD)`.

Text Solution

AI Generated Solution

To solve the problem, we need to find the vectors \(\vec{AB}\) and \(\vec{AD}\) given the diagonal vectors \(\vec{AC}\) and \(\vec{BD}\) of the parallelogram ABCD. ### Step 1: Write down the given vectors We have: \[ \vec{AC} = 2\hat{i} + 3\hat{j} + 4\hat{k} \] \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 26|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 27|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 24|1 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If vecF = 3hati + 4hatj+5hatk and vecS=6hati +2hatj+5hatk , the find the work done.

If vecF=3hati-4hatj+5hatk " and " vecS=6hati+2hatj+5hatk , the find the work done.

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=3hati-4hatj+2hatk find the modulus and direction cosines of vec(PQ) .

Given : vec A = hati + hatj +hatk and vec B =-hati-hatj-hatk What is the angle between (vec A - vec B) and vec A ?

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk . Find vec(PQ) and the direction cosines of vec(PQ) .

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

ABCD is a parallelogram with vec(AC) = hati - 2hatj + hatk and vec(BD) = -hati + 2hatj - 5hatk . Area of this parallelogram is equal to:

Two vectors are given by veca=-2hati+hatj-3hatk and vecb=5hati+3hatj-2hatk . If 3veca+2vecb-vec c=0 then third vector vecc is

Find the unit vector of (vec(A)+vec(B)) where vec(A)=2hati-hatj+3hatk and vec(B)=3hati-2hatj-2hatk .

In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 hatj + hatj + 2 hatk, " then " | vec(CA)|=