Home
Class 12
MATHS
i. Prove that the points veca - 2vecb + ...

i. Prove that the points `veca - 2vecb + 3 vecc, 2 veca + 3vecb- 4 vecc and -7 vecb + 10 vecc` are collinear, where `veca, vec b and vecc` are non-coplanar.
ii. Prove that the points `A(1, 2, 3), B(3,4, 7) and C(-3, -2, -5)` are collinear. Find the ratio in which point C divides AB.

Text Solution

Verified by Experts

Let the given points be A, B and C. Therefore,
`" " vec(AB)` = P.V. of B- P.V. of A
`" " = ( 2veca + 3 vecb - 4vecc) - (vec a - 2 vecb + 3vecc)`
`" " = veca + 5 vecb - 7 vecc `
`" " vec(AC) `= P.V of C - P.V of A
`" "=(-7vecb + 10 vec c) - (veca - 2vecb + 3 vecc)`
`" " = - veca - 5 vecb + 7vecc = - vec(AB)`
Since `vec(AC) =- vec(AB)`, it follows that the points A, B and C are collinear.
ii. Let C divide AB in the ratio `k:1`, then `C(-3, -2, -5) -= ((3k+1)/(k+1), (4k+2)/(k+1), (7k+3)/(k+1))`
`rArr " " (3k+1)/(k+1) = -3, (4k+2)/(k+1) = -2 and (7k+3)/(k+1) =-5`
`rArr " " k = -(2)/(3) ` from all relations
Hence, C divides AB externally in the ratio `2 : 3`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 37|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 38|1 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise ILLUSTRATION 35|1 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Prove that the three points veca-2vecb+3vecc, vec(2a)+3vecb-4vecc and -7vecb+10vecc are collinear

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

Show that points with position vectors 2veca-2vecb+3vecc,-2veca+3vecb-vecc and 6veca-7vecb+7vecc are collinear. It is given that vectors veca,vecb and vecc and non-coplanar.

Show that the three points whose position vectors are veca-2vecb+3vecc, 2veca+3vecb-4vecc, -7vecb+10vecc are collinear

Show that the points veca+2vecb+3c,-2veca+3vecb+5vecc and 7veca-vecc are colinear.

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Prove that [ veca+ vecb , vecb+ vecc , vecc+ veca]=2[ veca , vecb , vecc] .

Show that the points having position vectors (veca-2vecb+3vecc),(-2veca+3vecb+2vecc),(-8veca+13vecb) re collinear whatever veca,vecb,vecc may be

Prove that veca. [(vecb + vecc) xx (veca + 3 vecb + 4 vecc) ]= [{:(veca,vecb,vecc):}]