Home
Class 12
MATHS
If vec a , vec b , vec ca n d vec d are...

If ` vec a , vec b , vec ca n d vec d` are four vectors in three-dimensional space with the same initial point and such that `3 vec a+2 vec b+ vec c-2 vec d=0` , Find the point at which `A Ca n dB D` meet. Find the ratio in which `P` divides `A Ca n dB Ddot`

Text Solution

AI Generated Solution

To solve the problem, we will follow these steps: ### Step 1: Understand the given equation We are given the equation: \[ 3\vec{a} + 2\vec{b} + \vec{c} - 2\vec{d} = 0 \] This implies that: \[ 3\vec{a} + \vec{c} = -2\vec{b} + 2\vec{d} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SUBJECTIVE|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|20 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b , vec ca n d vec d are four vectors in three-dimensional space with the same initial point and such that 3 vec a-2 vec b+ vec c-2 vec d=0 , show that terminals A ,B ,Ca n d D of these vectors are coplanar. Find the point at which A Ca n dB D meet. Find the ratio in which P divides A Ca n dB Ddot

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a ,vec b,vec c and vec d are the position vectors of the points A, B, C and D respectively in three dimensionalspace no three of A, B, C, D are collinear and satisfy the relation 3vec a-2vec b +vec c-2vec d = 0 , then

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec c- vec d , then show that A B C D is parallelogram.

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec a- vec d , then show that A B C D is parallelogram.

If vec a\ a n d\ vec b are two vectors such that | vec axx vec b|=3\ a n d\ vec adot vec b=1, find the angle between vec a\ a n d\ vec b .

Let vec a , vec b , vec c , vec d be the position vectors of the four distinct points A , B , C , Ddot If vec b- vec a= vec c- vec a , then show that A B C D is parallelogram.

Let vec a\ a n d\ vec b be two vectors of the same magnitude such that the angle between then is 60^0 and vec adot vec b=8. Find | vec a|a n d\ | vec b|dot

If | vec a|=2,\ | vec b|=3\ a n d\ vec adot vec b=3 find the projection of vec b\ on\ vec adot

If vec a= vec b+ vec c , vec b X vecd= vec0 and vec c*vec d=0 then ( vec dx( vec ax vec d))/( vec d^2) is equal to (a) vec a (b) vec b (c) vec c (d) vec d