Home
Class 12
MATHS
Show that the vectors 2veca-vecb+3vecc, ...

Show that the vectors `2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc` are non-coplanar vectors (where `veca, vecb, vecc` are non-coplanar vectors).

Text Solution

Verified by Experts

Consider `2veca-vecb+3vecc=x (veca+vecb-2vecc) + y(veca+vecb-3vecc)`
or `" "2veca-vecb+3vecc= (x+y)veca+ (x+y)vecb+ (-2x-3y)vecc`
`" "x+y=2" "` (i)
`" "x+y=-1" "` (ii)
`" "-2x-3y=3" "` (iii)
Multiplying (i) by 3 and adding it to (iii), we get
`x=9`
From (i), `9+y=2 or y =-7`
Now putting `x=9 and y=-7` in (ii), we get
`" "9-7=-1`
or `2=-1`, which is not true.
Therefore, the given vectors are not coplanar.
Alternate method :
We have determinant of co-efficients as
`" "|{:(2,,-1,,3),(1,,1,,-2),(1,,1,,-3):}| = -3 ne 0`
Hence, vectors are non-coplanar.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SUBJECTIVE|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|20 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

Show that points with position vectors 2veca-2vecb+3vecc,-2veca+3vecb-vecc and 6veca-7vecb+7vecc are collinear. It is given that vectors veca,vecb and vecc and non-coplanar.

For any three vectors veca,vecb,vecc show that (veca-vecb),(vecb-vecc) (vecc-veca) are coplanar.

The position vector of three points are 2veca-vecb+3vecc , veca-2vecb+lambdavecc and muveca-5vecb where veca,vecb,vecc are non coplanar vectors. The points are collinear when

Examine whether the following vectors from a linearly dependent or independent set of vector: veca-3vecb+2vecc, veca-9vecb-vecc,3veca+2vecb-vecc where veca,vecb,vecc are non zero non coplanar vectors

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(veccxxvecd)=1 and veca.vecc=1/2 then (A) veca,vecb,vecc are non coplanar (B) vecb,vecc, vecd are non coplanar (C) vecb, vecd are non paralel (D) veca, vecd are paralel and vecb, vecc are parallel

Show that the points having position vectors (veca-2vecb+3vecc),(-2veca+3vecb+2vecc),(-8veca+13vecb) re collinear whatever veca,vecb,vecc may be

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]