Home
Class 12
MATHS
If veca, vecb and vecc are three non-zer...

If `veca, vecb and vecc` are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : `veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc`.

Text Solution

AI Generated Solution

To find the linear relation between the vectors \( \vec{a} - 2\vec{b} + 3\vec{c} \), \( 2\vec{a} - 3\vec{b} + 4\vec{c} \), \( 3\vec{a} - 4\vec{b} + 5\vec{c} \), and \( 7\vec{a} - 11\vec{b} + 15\vec{c} \), we will express the last vector as a linear combination of the first three vectors. Let: - \( \vec{v_1} = \vec{a} - 2\vec{b} + 3\vec{c} \) - \( \vec{v_2} = 2\vec{a} - 3\vec{b} + 4\vec{c} \) - \( \vec{v_3} = 3\vec{a} - 4\vec{b} + 5\vec{c} \) - \( \vec{v_4} = 7\vec{a} - 11\vec{b} + 15\vec{c} \) ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SUBJECTIVE|14 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise SINGLE CORRECT ANSWER TYPE|40 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|20 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 8vecb+6vecc, veca+vecb+vecc, 2veca-vecb+vecc, veca-vecb-vecc

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 4veca+5vecb+vecc,-vecb-vecc, 3veca+9vecb+4vecc,-4veca+4vecb+4vecc

If veca, vecb and vecc are non - zero vectors such that veca.vecb= veca.vecc ,then find the goemetrical relation between the vectors.

If veca, vecb, vecc are non-coplanar vectors, prove that the following vectors are coplanar. (i) 3veca - 7vecb - 4vecc, 3veca - 2vecb + vecc, veca + vecb + 2vecc (ii) 5veca +6vecb + 7vecc, 7veca - 8vecb + 9vecc, 3veca + 20 vecb + 5vecc

If veca,vecb,vecc are non coplanar vectors, check whether the following points are coplanar: 6veca+2vecb-vecc, 2veca+vecb+3vecc, -veca+2vecb-4vecc, -12veca-vecb-3vecc

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 2veca-3vecb+4vecc, -veca+3vecb-5vecc,-veca+2vecb-3vecc

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If veca,vecb,vecc are non coplanar vectors, prove that the following points are coplanar: 6veca-4vecb+10vecc, -5veca+3vecb-10vecc, 4veca-6vecb-10vecc,2vecb+10vecc

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 5veca+6vecb+7vecc,7veca-8vecb+9vecc, 3veca+20vecb+5vecc