Home
Class 12
MATHS
Let veca, vecb and vecc are three unit v...

Let `veca, vecb` and `vecc` are three unit vectors in a plane such that they are equally inclined to each other, then the value of `(veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb)` can be

A

`9/4`

B

`-9/4`

C

`3/4`

D

`-3/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) \] Given that \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors that are equally inclined to each other, the angle between any two vectors is \(120^\circ\). ### Step 1: Understanding the Cross Products Since \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors and equally inclined, we can use the properties of cross products. The magnitude of the cross product of two vectors is given by: \[ |\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin(\theta) \] where \(\theta\) is the angle between the vectors. For unit vectors, \(|\vec{u}| = |\vec{v}| = 1\). ### Step 2: Calculate Each Term Let's calculate the first term \((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c})\): 1. **Magnitude of \(\vec{a} \times \vec{b}\)**: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(120^\circ) = 1 \cdot 1 \cdot \sin(120^\circ) = \sin(120^\circ) = \frac{\sqrt{3}}{2} \] 2. **Magnitude of \(\vec{b} \times \vec{c}\)**: \[ |\vec{b} \times \vec{c}| = |\vec{b}| |\vec{c}| \sin(120^\circ) = 1 \cdot 1 \cdot \sin(120^\circ) = \frac{\sqrt{3}}{2} \] 3. **Angle between \(\vec{a} \times \vec{b}\) and \(\vec{b} \times \vec{c}\)**: Since \(\vec{a}, \vec{b}, \vec{c}\) are in the same plane, \(\vec{a} \times \vec{b}\) is perpendicular to the plane formed by \(\vec{a}\) and \(\vec{b}\), and similarly for \(\vec{b} \times \vec{c}\). Therefore, the angle between these two cross products is \(0^\circ\). 4. **Dot Product**: \[ (\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = |\vec{a} \times \vec{b}| |\vec{b} \times \vec{c}| \cos(0^\circ) = \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) \cdot 1 = \frac{3}{4} \] ### Step 3: Repeat for Other Terms By symmetry, we can assert that: \[ (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) = \frac{3}{4} \] \[ (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = \frac{3}{4} \] ### Step 4: Sum the Terms Now, we can sum all the terms: \[ (\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = \frac{3}{4} + \frac{3}{4} + \frac{3}{4} = \frac{9}{4} \] ### Final Answer Thus, the value of the expression is: \[ \frac{9}{4} \]

To solve the problem, we need to evaluate the expression: \[ (\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) \] Given that \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors that are equally inclined to each other, the angle between any two vectors is \(120^\circ\). ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise JEE Main|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos

Similar Questions

Explore conceptually related problems

If alpha(veca xx vecb)+beta(vecb xx vecc)+lambda(vecc xx veca)=0 , then

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

Vectors veca, vecb, vecc are three unit vectors and vecc is equally inclined to both veca and vecb . Let veca xx (vecb xx vecc) + vecb xx (vecc xx veca) =(4+x^(2))vecb-(4xcos^(2)theta)veca , then veca and vecb are non-collinear vectors, x gt 0

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If vectors, vecb, vecc and vecd are not coplanar, the prove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is