Home
Class 12
MATHS
The coordinates of the mid-points of the...

The coordinates of the mid-points of the sides of `DeltaPQR`, are `(3a,0,0), (0,3b,0)` and `(0,0,3c)` respectively, then the area of `DeltaPQR` is

A

`18sqrt(b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2))`

B

`9sqrt(b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2))`

C

`9/12sqrt(b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2))`

D

`9/2sqrt(b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle \( \Delta PQR \) given the midpoints of its sides, we can follow these steps: ### Step 1: Identify the midpoints and their coordinates The midpoints of the sides of triangle \( PQR \) are given as: - \( L(3a, 0, 0) \) - \( M(0, 3b, 0) \) - \( N(0, 0, 3c) \) ### Step 2: Determine the vectors for the sides of triangle \( LMN \) We will calculate the vectors \( \overrightarrow{LM} \) and \( \overrightarrow{LN} \): - \( \overrightarrow{LM} = M - L = (0 - 3a, 3b - 0, 0 - 0) = (-3a, 3b, 0) \) - \( \overrightarrow{LN} = N - L = (0 - 3a, 0 - 0, 3c - 0) = (-3a, 0, 3c) \) ### Step 3: Calculate the cross product of the vectors The area of triangle \( LMN \) can be found using the formula: \[ \text{Area} = \frac{1}{2} \left| \overrightarrow{LM} \times \overrightarrow{LN} \right| \] Calculating the cross product: \[ \overrightarrow{LM} \times \overrightarrow{LN} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3a & 3b & 0 \\ -3a & 0 & 3c \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \left( 3b \cdot 3c - 0 \cdot 0 \right) - \hat{j} \left( -3a \cdot 3c - 0 \cdot -3a \right) + \hat{k} \left( -3a \cdot 0 - 3b \cdot -3a \right) \] \[ = 9bc \hat{i} + 9ac \hat{j} + 9ab \hat{k} \] ### Step 4: Calculate the magnitude of the cross product The magnitude of the cross product is: \[ \left| \overrightarrow{LM} \times \overrightarrow{LN} \right| = \sqrt{(9bc)^2 + (9ac)^2 + (9ab)^2} = 9 \sqrt{b^2c^2 + a^2c^2 + a^2b^2} \] ### Step 5: Calculate the area of triangle \( LMN \) Now, substituting back into the area formula: \[ \text{Area of } \Delta LMN = \frac{1}{2} \times 9 \sqrt{b^2c^2 + a^2c^2 + a^2b^2} = \frac{9}{2} \sqrt{b^2c^2 + a^2c^2 + a^2b^2} \] ### Step 6: Calculate the area of triangle \( PQR \) Since the area of triangle \( PQR \) is four times the area of triangle \( LMN \): \[ \text{Area of } \Delta PQR = 4 \times \text{Area of } \Delta LMN = 4 \times \frac{9}{2} \sqrt{b^2c^2 + a^2c^2 + a^2b^2} = 18 \sqrt{b^2c^2 + a^2c^2 + a^2b^2} \] ### Final Answer The area of triangle \( PQR \) is: \[ \text{Area of } \Delta PQR = 18 \sqrt{b^2c^2 + a^2c^2 + a^2b^2} \] ---

To find the area of triangle \( \Delta PQR \) given the midpoints of its sides, we can follow these steps: ### Step 1: Identify the midpoints and their coordinates The midpoints of the sides of triangle \( PQR \) are given as: - \( L(3a, 0, 0) \) - \( M(0, 3b, 0) \) - \( N(0, 0, 3c) \) ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise JEE Main|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos

Similar Questions

Explore conceptually related problems

The coordinates of the point which is equidistant from the points O(0,0,0) A (a,0,0), B(0,b,0) and C(0,0,c)

The coordinates of the mid points of sides AB, BC and CA of A B C are D(1,2,-3),\ E(3,0,1)a n d\ F(-1,1,-4) respectively. Write the coordinates of its centroid.

The coordinates of the mid points of sides AB, BC and CA of A B C are D(1,2,-3),\ E(3,0,1)a n d\ F(-1,1,-4) respectively. Write the coordinates of its centroid.

It the mid-points of the sides of triangle are (1, 2, -3), (3, 0, 1) and (2, -2, 5), then the centroid is

The coordinates of the point equidistant from the points A(0, 0, 0), B(4, 0, 0), C(0, 6, 0) and D(0, 0, 8) is

Find the coordinates of the point equidistant from the points (0,0,0),(2,0,0),(0,4,0) and (0,0,6)

Find the coordinates of the point equidistant from the four points A(0,0,0) , B (a,0,0) , C(0,b,0) and D(0,0,c) .

if the coordinates of the mid points of the Sides of a triangle are (1,2) ,(0,-1) and (2, -1) .Find the coordinates of its vertices :

if the coordinates of the mid points of the Sides of a triangle are (1,2) ,(0,-1) and (2, -1) .Find the coordinates of its vertices :

If mid-points of the sides of a triangle are (1, 2, -3), (3, 0, 1) and (-1, 1, -4). Find its vertices.