Home
Class 12
MATHS
Let triangleABC be a given triangle. If ...

Let `triangleABC` be a given triangle. If `|vec(BA)-tvec(BC)|ge|vec(AC)|` for any `t in R`,then `triangleABC` is

A

Equilateral

B

Right angled

C

Isosceles

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given inequality involving the vectors in triangle \( ABC \). We are given that: \[ |\vec{BA} - t\vec{BC}| \geq |\vec{AC}| \] for any \( t \in \mathbb{R} \). We want to determine the nature of triangle \( ABC \). ### Step 1: Rewrite the vectors First, we can express the vectors in terms of their components. The vector \( \vec{BA} \) can be written as \( \vec{A} - \vec{B} \) and \( \vec{BC} \) as \( \vec{C} - \vec{B} \). Thus, we have: \[ \vec{BA} - t\vec{BC} = (\vec{A} - \vec{B}) - t(\vec{C} - \vec{B}) = \vec{A} - (1 - t)\vec{B} - t\vec{C} \] ### Step 2: Analyze the magnitude Now we need to analyze the magnitude of this vector: \[ |\vec{BA} - t\vec{BC}| = |(\vec{A} - (1 - t)\vec{B} - t\vec{C})| \] ### Step 3: Apply the triangle inequality Using the triangle inequality, we can state that: \[ |\vec{BA} - t\vec{BC}| \geq |\vec{AC}| \] This implies that the distance between points \( A \) and the line formed by points \( B \) and \( C \) is at least the length of \( AC \). ### Step 4: Consider the case when \( t = 1 \) Let's consider the case when \( t = 1 \): \[ |\vec{BA} - \vec{BC}| = |\vec{BA} - \vec{C} + \vec{B}| \] This simplifies to: \[ |\vec{BA} - \vec{BC}| = |\vec{A} - \vec{C}| \] ### Step 5: Set up the quadratic inequality Now we can set up the quadratic inequality based on the condition given. The expression \( |\vec{BA} - t\vec{BC}| \) can be squared to yield: \[ |\vec{BA} - t\vec{BC}|^2 \geq |\vec{AC}|^2 \] Expanding this, we get: \[ |\vec{BA}|^2 - 2t(\vec{BA} \cdot \vec{BC}) + t^2|\vec{BC}|^2 \geq |\vec{AC}|^2 \] ### Step 6: Formulate the discriminant This forms a quadratic in \( t \): \[ t^2 |\vec{BC}|^2 - 2t (\vec{BA} \cdot \vec{BC}) + (|\vec{BA}|^2 - |\vec{AC}|^2) \geq 0 \] For this quadratic to hold for all \( t \), the discriminant must be less than or equal to zero: \[ D = (-2(\vec{BA} \cdot \vec{BC}))^2 - 4|\vec{BC}|^2(|\vec{BA}|^2 - |\vec{AC}|^2) \leq 0 \] ### Step 7: Analyze the discriminant This leads us to: \[ 4(\vec{BA} \cdot \vec{BC})^2 - 4|\vec{BC}|^2(|\vec{BA}|^2 - |\vec{AC}|^2) \leq 0 \] Dividing through by 4, we have: \[ (\vec{BA} \cdot \vec{BC})^2 \leq |\vec{BC}|^2 (|\vec{BA}|^2 - |\vec{AC}|^2) \] ### Step 8: Conclusion The condition implies that the angle \( C \) must be \( 90^\circ \) (since the sine of the angle must be \( 1 \)), indicating that triangle \( ABC \) is a right triangle. ### Final Answer Thus, triangle \( ABC \) is a right-angled triangle.

To solve the problem, we need to analyze the given inequality involving the vectors in triangle \( ABC \). We are given that: \[ |\vec{BA} - t\vec{BC}| \geq |\vec{AC}| \] for any \( t \in \mathbb{R} \). We want to determine the nature of triangle \( ABC \). ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise JEE Main|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos

Similar Questions

Explore conceptually related problems

ABC is an equilateral triangle. Length of each side is 'a' and centroid is point O. Find If |vec(AB)+vec(BC)+vec(AC)|=na then n = ?

If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

triangleABC is an isosceles triangle with AC = BC. If AB^(2)= 2AC^(2) . Prove that triangle ABC is a right triangle.

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(BC)|=7, |vec(CD)|=11 and |vec(DA)|=9 . Then find the value of vec(AC)*vec(BD) .

Given that P=Q=R . If vec(P)+vec(Q)=vec(R) then the angle between vec(P) and vec(R) is theta_(1) . If vec(P)+vec(Q)+vec(R)=vec(0) then the angle between vec(P) and vec(R) is theta_(2) . The relation between theta_(1) and theta_(2) is :-

triangleABC is an isoscles triangle with AB= AC= 13 cm and the length of altitude from A on BC is 5 cm, find BC.

In a parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC)

In triangleABC,P is any point inside a triangle such that area of triangleAPB,triangleBPC , triangleCPA are equal.If the line AP cuts bar(BC) at M such that area of trianglePMC is 4.5 sq units.Then area of triangleABC is

If I is the centre of a circle inscribed in a triangle ABC , then |vec(BC)|vec(IA)+|vec(CA)|vec(IB)+|vec(AB)|vec(IC) is