Home
Class 12
MATHS
If veca and vecb are non-zero, non paral...

If `veca` and `vecb` are non-zero, non parallel vectors, then the value of
`|veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2)` equals

A

`(1+veca.veca)(1+vecb.vecc)`

B

`2(1+veca.veca)(1+vecb.vecb)`

C

`2{(1+veca.veca)(1+vecb.vecb)-(1-veca.vecb)^(2)}`

D

`2{(1-veca.veca)(1-vecb.vecb)+(1-veca.vecb)^(2)}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the expression: \[ | \vec{a} + \vec{b} + \vec{a} \times \vec{b} |^2 + | \vec{a} + \vec{b} - \vec{a} \times \vec{b} |^2 \] ### Step 1: Expand the Magnitudes We start by expanding the magnitudes of both expressions. 1. **First Expression:** \[ | \vec{a} + \vec{b} + \vec{a} \times \vec{b} |^2 = (\vec{a} + \vec{b} + \vec{a} \times \vec{b}) \cdot (\vec{a} + \vec{b} + \vec{a} \times \vec{b}) \] Using the distributive property: \[ = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) + 2(\vec{a} \cdot \vec{b}) + 2(\vec{a} + \vec{b}) \cdot (\vec{a} \times \vec{b}) \] 2. **Second Expression:** \[ | \vec{a} + \vec{b} - \vec{a} \times \vec{b} |^2 = (\vec{a} + \vec{b} - \vec{a} \times \vec{b}) \cdot (\vec{a} + \vec{b} - \vec{a} \times \vec{b}) \] Similarly, expanding this: \[ = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) + 2(\vec{a} \cdot \vec{b}) - 2(\vec{a} + \vec{b}) \cdot (\vec{a} \times \vec{b}) \] ### Step 2: Combine the Two Expressions Now we combine the two expanded expressions: \[ | \vec{a} + \vec{b} + \vec{a} \times \vec{b} |^2 + | \vec{a} + \vec{b} - \vec{a} \times \vec{b} |^2 \] This results in: \[ 2(\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b}) + 2(\vec{a} \cdot \vec{b}) + 2(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) \] ### Step 3: Simplify the Terms Recall that: - \(\vec{a} \cdot \vec{a} = |\vec{a}|^2\) - \(\vec{b} \cdot \vec{b} = |\vec{b}|^2\) - \((\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) = |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta\) Thus, we can rewrite: \[ = 2(|\vec{a}|^2 + |\vec{b}|^2 + |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta + 2(\vec{a} \cdot \vec{b})) \] ### Step 4: Final Expression Now we can express the final result in terms of the dot products and magnitudes: \[ = 2(1 + |\vec{a}|^2)(1 + |\vec{b}|^2) - 2(1 - \vec{a} \cdot \vec{b})^2 \] ### Conclusion Thus, the final answer is: \[ 2(1 + |\vec{a}|^2)(1 + |\vec{b}|^2) - 2(1 - \vec{a} \cdot \vec{b})^2 \]

To solve the problem, we need to compute the expression: \[ | \vec{a} + \vec{b} + \vec{a} \times \vec{b} |^2 + | \vec{a} + \vec{b} - \vec{a} \times \vec{b} |^2 \] ### Step 1: Expand the Magnitudes We start by expanding the magnitudes of both expressions. ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise JEE Main|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos

Similar Questions

Explore conceptually related problems

Given that veca and vecb are two non zero vectors, then the value of (veca + vecb) xx (veca-vecb) is,

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .

What is the value of (vecA + vecB) * ( vecA xx vecB) ?

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If a ,ba n dc are three non-cop0lanar vector, non-zero vectors then the value of ( veca . veca ) vecb × vecc +( veca . vecb ) vecc × veca +( veca . vecc ) veca × vecb .

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)