Home
Class 12
MATHS
Three vectors veca,vecb,vecc are such th...

Three vectors `veca,vecb,vecc` are such that `veca xx vecb=4(veca xx vecc)` and `|veca|=|vecb|=1` and `|vecc|=1/4`. If the angle between `vecb` and `vecc` is `pi/3` then `vecb` is

A

`veca + 4vecc`

B

`veca-4vecc`

C

`4vecc-veca`

D

`2vecc-veca`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`veca xx vecb = 4(veca xx vecc)`
`veca xx (vecb-4vecc)=vec0`
`rArr veca = t(vecb-4vecc)`, where t is scalar.
`therefore |veca|^(2)=t^(2){|b^(2)|+16|c|^(2)-8(vecb.vecc)}`
`therefore 1=t^(2){1+16.1/16-8.1.1/4.1/2}`
`therefore 1=t^(2)[1]`
`therefore t=+-1`
`t=+-1`
`therefore veca=vecb-4vecc` or `veca=vecb+4vecc`
`rArr vecb=veca+4vec`or `vecb=4vecc-veca`
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise JEE Main|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos

Similar Questions

Explore conceptually related problems

Three vectors veca,vecb,vecc are such that vecaxxvecb= 3(vecaxxvecc) Also |veca|=|vecb|=1, |vecc|=1/3 If the angle between vecb and vecc is 60^@ then

If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx vecb = 2(veca xx vecc),|veca|=|vecc|=1, |vecb|=4 and the angle between vecb and vecc is cos^(-1)(1//4) , then vecb-2vecc= lambda veca where lambda is equal to:

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

Let vea, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca, vecb,vecc are unit vectors such that veca is perpendicular to the plane of vecb, vecc and the angle between vecb,vecc is pi/3 , then |veca+vecb+vecc|=

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to