Home
Class 12
MATHS
If 2veca, 3vecb,2(veca xx vecb) are posi...

If `2veca, 3vecb,2(veca xx vecb)` are position vectors of the vectors A,B,C, of `triangleABC` and `|veca|=|vecb|=1,vec(OA).vec(OB)=-3` (where O is the origin), then

A

Triangle ABC is right-angled triangle

B

Angle B is `90^(@)`

C

`A=cos^(-1)(sqrt(7/19))`

D

The position vector of orthocenter is `2(veca xx vecb)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Define the position vectors Given the position vectors of points A, B, and C as: - \( \vec{OA} = 2\vec{a} \) - \( \vec{OB} = 3\vec{b} \) - \( \vec{OC} = 2(\vec{a} \times \vec{b}) \) ### Step 2: Use the dot product information We know that: \[ \vec{OA} \cdot \vec{OB} = -3 \] Substituting the position vectors: \[ (2\vec{a}) \cdot (3\vec{b}) = -3 \] This simplifies to: \[ 6(\vec{a} \cdot \vec{b}) = -3 \] Thus, \[ \vec{a} \cdot \vec{b} = -\frac{1}{2} \] ### Step 3: Find the angle between vectors A and B From the dot product, we can find the angle \( \theta \) between \( \vec{a} \) and \( \vec{b} \): \[ \cos \theta = \vec{a} \cdot \vec{b} = -\frac{1}{2} \] This implies: \[ \theta = \frac{2\pi}{3} \] ### Step 4: Calculate the sine of the angle Using the sine identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] We find: \[ \sin^2 \theta = 1 - \left(-\frac{1}{2}\right)^2 = 1 - \frac{1}{4} = \frac{3}{4} \] Thus, \[ \sin \theta = \frac{\sqrt{3}}{2} \] ### Step 5: Calculate \( \vec{OC} \) Using the formula for the cross product: \[ |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin \theta \] Since \( |\vec{a}| = |\vec{b}| = 1 \): \[ |\vec{a} \times \vec{b}| = 1 \cdot 1 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} \] Thus, \[ \vec{OC} = 2(\vec{a} \times \vec{b}) \] The magnitude of \( \vec{OC} \) is: \[ |\vec{OC}| = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \] ### Step 6: Find the lengths of sides AB, BC, and CA 1. **Length of AB**: \[ \vec{AB} = \vec{OB} - \vec{OA} = 3\vec{b} - 2\vec{a} \] \[ |\vec{AB}| = |3\vec{b} - 2\vec{a}| = \sqrt{(3\vec{b} - 2\vec{a}) \cdot (3\vec{b} - 2\vec{a})} \] Expanding this gives: \[ |\vec{AB}|^2 = 9|\vec{b}|^2 + 4|\vec{a}|^2 - 12(\vec{a} \cdot \vec{b}) \] Substituting \( |\vec{a}| = |\vec{b}| = 1 \) and \( \vec{a} \cdot \vec{b} = -\frac{1}{2} \): \[ |\vec{AB}|^2 = 9 + 4 + 12 \cdot \frac{1}{2} = 13 + 6 = 19 \] Thus, \[ |\vec{AB}| = \sqrt{19} \] 2. **Length of BC**: \[ \vec{BC} = \vec{OC} - \vec{OB} = 2(\vec{a} \times \vec{b}) - 3\vec{b} \] We calculate \( |\vec{BC}| \) similarly. 3. **Length of CA**: \[ \vec{CA} = \vec{OA} - \vec{OC} = 2\vec{a} - 2(\vec{a} \times \vec{b}) \] We calculate \( |\vec{CA}| \) similarly. ### Step 7: Verify the triangle property Using the Pythagorean theorem, we check if: \[ |\vec{AC}|^2 + |\vec{BC}|^2 = |\vec{AB}|^2 \] If true, triangle ABC is right-angled. ### Final Result After calculating the lengths, we find that triangle ABC is right-angled at point C. ---

To solve the problem, we will follow these steps: ### Step 1: Define the position vectors Given the position vectors of points A, B, and C as: - \( \vec{OA} = 2\vec{a} \) - \( \vec{OB} = 3\vec{b} \) - \( \vec{OC} = 2(\vec{a} \times \vec{b}) \) ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise JEE Main|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are position vectors of A,B, and C respectively of DeltaABC and if|veca-vecb|=4,|vecb-vec(c)|=2, |vecc-veca|=3 , then the distance between the centroid and incenter of triangleABC is

If veca , vec b all are unit vector, then the greatest value of |veca +vecb| + |veca-vecb| is

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .

If veca , vecb are unit vectors such that |vec a+vecb|=-1 " then " |2veca -3vecb| =

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

Find |veca-vecb| , if two vector veca and vecb are such that |veca|=4,|vecb|=5 and veca.vecb=3

If veca,vecb,vecc are coplanar vectors then find value of [veca-vecb+vec2c vecb-vec c+2veca veca+2vecb-vec c]