Home
Class 12
MATHS
If veca,vecb,vecc,vecd are unit vectors ...

If `veca,vecb,vecc,vecd` are unit vectors such that `veca.vecb=1/2`, `vecc.vecd=1/2` and angle between `veca xx vecb` and `vecc xx vecd` is `pi/6` then the value of `|[veca \ vecb \ vecd]vecc-[veca \ vecb \ vecc]vecd|=`

A

`3//2`

B

`3//4`

C

`3//8`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given conditions and use vector properties to find the required value. ### Given: - \( \vec{a}, \vec{b}, \vec{c}, \vec{d} \) are unit vectors. - \( \vec{a} \cdot \vec{b} = \frac{1}{2} \) - \( \vec{c} \cdot \vec{d} = \frac{1}{2} \) - The angle between \( \vec{a} \times \vec{b} \) and \( \vec{c} \times \vec{d} \) is \( \frac{\pi}{6} \). ### Required: Find the value of \( |\left[\vec{a} \ \vec{b} \ \vec{d}\right] \vec{c} - \left[\vec{a} \ \vec{b} \ \vec{c}\right] \vec{d}| \). ### Step 1: Find the angles between the vectors From the dot product: - Since \( \vec{a} \cdot \vec{b} = \frac{1}{2} \), and both are unit vectors, we have: \[ |\vec{a}| |\vec{b}| \cos(\theta_1) = \frac{1}{2} \implies 1 \cdot 1 \cdot \cos(\theta_1) = \frac{1}{2} \implies \cos(\theta_1) = \frac{1}{2} \] Thus, \( \theta_1 = \frac{\pi}{3} \). - Similarly, for \( \vec{c} \cdot \vec{d} = \frac{1}{2} \): \[ |\vec{c}| |\vec{d}| \cos(\theta_2) = \frac{1}{2} \implies 1 \cdot 1 \cdot \cos(\theta_2) = \frac{1}{2} \implies \cos(\theta_2) = \frac{1}{2} \] Thus, \( \theta_2 = \frac{\pi}{3} \). ### Step 2: Find the magnitude of the cross products Using the angle between the cross products: - The magnitude of \( \vec{a} \times \vec{b} \): \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\theta_1) = 1 \cdot 1 \cdot \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] - The magnitude of \( \vec{c} \times \vec{d} \): \[ |\vec{c} \times \vec{d}| = |\vec{c}| |\vec{d}| \sin(\theta_2) = 1 \cdot 1 \cdot \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] ### Step 3: Calculate the magnitude of the scalar triple products The angle between \( \vec{a} \times \vec{b} \) and \( \vec{c} \times \vec{d} \) is \( \frac{\pi}{6} \): \[ |\vec{a} \times \vec{b} \cdot \vec{c} \times \vec{d}| = |\vec{a} \times \vec{b}| |\vec{c} \times \vec{d}| \cos\left(\frac{\pi}{6}\right) \] Substituting the values: \[ = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{8} \] ### Step 4: Use the vector triple product identity Using the vector triple product identity: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] We can express: \[ |\left[\vec{a} \ \vec{b} \ \vec{d}\right] \vec{c} - \left[\vec{a} \ \vec{b} \ \vec{c}\right] \vec{d}| = |(\vec{c} \cdot \vec{a} \times \vec{b}) \vec{d} - (\vec{d} \cdot \vec{a} \times \vec{b}) \vec{c}| \] ### Step 5: Substitute known values Let \( S = \vec{a} \times \vec{b} \): \[ = |S \cdot \vec{c} \cdot \vec{d} - S \cdot \vec{d} \cdot \vec{c}| = |S| \cdot |S| \cdot \sin\left(\frac{\pi}{6}\right) \] Substituting the values: \[ = \frac{3\sqrt{3}}{8} \cdot \frac{1}{2} = \frac{3\sqrt{3}}{16} \] ### Final Result Thus, the value is: \[ |\left[\vec{a} \ \vec{b} \ \vec{d}\right] \vec{c} - \left[\vec{a} \ \vec{b} \ \vec{c}\right] \vec{d}| = \frac{3\sqrt{3}}{16} \]

To solve the problem step by step, we will analyze the given conditions and use vector properties to find the required value. ### Given: - \( \vec{a}, \vec{b}, \vec{c}, \vec{d} \) are unit vectors. - \( \vec{a} \cdot \vec{b} = \frac{1}{2} \) - \( \vec{c} \cdot \vec{d} = \frac{1}{2} \) - The angle between \( \vec{a} \times \vec{b} \) and \( \vec{c} \times \vec{d} \) is \( \frac{\pi}{6} \). ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos
  • VECTORS; DEFINITION, GEOMETRY RELATED TO VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.1|25 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(veccxxvecd)=1 and veca.vecc=1/2, then

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

Let vea, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

Let vecA, vecB and vecC be unit vectors such that vecA.vecB = vecA.vecC=0 and the angle between vecB and vecC " be" pi//3 . Then vecA = +- 2(vecB xx vecC) .

If veca, vecb, vecc and vecd ar distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.

If veca, vecb,vecc are unit vectors such that veca is perpendicular to the plane of vecb, vecc and the angle between vecb,vecc is pi/3 , then |veca+vecb+vecc|=

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

CENGAGE ENGLISH-VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS-DPP 2.4
  1. veca=2veci+vecj+veck, vecb=b(1)hati+b(2)hatj+b(3)hatk, veca xx vecb=...

    Text Solution

    |

  2. If veca,vecb,vecc,vecd are unit vectors such that veca.vecb=1/2, vecc....

    Text Solution

    |

  3. If veca,vecb,vecc,vecd be vectors such that [vecavecbvecc]=2 and (veca...

    Text Solution

    |

  4. Let (vecp xx vecq) xx vecp +(vecp.vecq)vecq=(x^(2)+y^(2))vecq + (14-4x...

    Text Solution

    |

  5. If veca, vecb,vecc are three non-coplanar vectors such that veca xx ve...

    Text Solution

    |

  6. Let hata and hatb be two unit vectors such that hata.hatb=1/3 and hata...

    Text Solution

    |

  7. Let a and c be unit vectors inclined at (pi)/(3) with each other. If (...

    Text Solution

    |

  8. if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such tha...

    Text Solution

    |

  9. veca, vecb, vecc are unit vectors such that if the angles between the ...

    Text Solution

    |

  10. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  11. If veca, vecb, vecc are non coplanar vectors and vecp, vecq, vecr are ...

    Text Solution

    |

  12. Let veca=hati-3hatj+4hatk, vecB=6hati+4hatj-8hatk, vecC=5hati+2hatj+5h...

    Text Solution

    |

  13. The volume of the parallelepiped whose coterminous edges are represent...

    Text Solution

    |

  14. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  15. If a, b, c are three non-zero vectors, then which of the following sta...

    Text Solution

    |

  16. Vectors veca, vecb, vecc are three unit vectors and vecc is equally in...

    Text Solution

    |

  17. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  18. veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc ar...

    Text Solution

    |

  19. Volume of the parallelopiped whose adjacent edges are vectors veca ...

    Text Solution

    |

  20. A vector along the bisector of angle between the vectors vecb and vec...

    Text Solution

    |