Home
Class 12
MATHS
if veca=hati+hatj+2hatk, vecb=hati+2hatj...

if `veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk` and `|vecc|=1`
Such that `[veca xx vecb vecb xx vecc vecc xx veca]` has maximum value, then the value of `|(veca xx vecb) xx vecc|^(2)` is (a) 0 (b) 1 (c) `4/3` (d) none of these

A

0

B

1

C

`4/3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|(\vec{A} \times \vec{B}) \times \vec{C}|^2\) given that \(\vec{A} = \hat{i} + \hat{j} + 2\hat{k}\), \(\vec{B} = \hat{i} + 2\hat{j} + 2\hat{k}\), and \(|\vec{C}| = 1\) such that the expression \([\vec{A} \times \vec{B}, \vec{B} \times \vec{C}, \vec{C} \times \vec{A}]\) has a maximum value. ### Step 1: Calculate \(\vec{A} \times \vec{B}\) \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 2 \\ 2 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} \] Calculating the minors: \[ = \hat{i} (1 \cdot 2 - 2 \cdot 2) - \hat{j} (1 \cdot 2 - 1 \cdot 2) + \hat{k} (1 \cdot 2 - 1 \cdot 1) \] \[ = \hat{i} (2 - 4) - \hat{j} (2 - 2) + \hat{k} (2 - 1) \] \[ = -2\hat{i} + 0\hat{j} + 1\hat{k} = -2\hat{i} + \hat{k} \] ### Step 2: Find the magnitude of \(\vec{A} \times \vec{B}\) \[ |\vec{A} \times \vec{B}| = \sqrt{(-2)^2 + 0^2 + 1^2} = \sqrt{4 + 0 + 1} = \sqrt{5} \] ### Step 3: Determine \(\vec{C}\) for maximum value For \([\vec{A} \times \vec{B}, \vec{B} \times \vec{C}, \vec{C} \times \vec{A}]\) to be maximum, \(\vec{C}\) should be perpendicular to both \(\vec{A}\) and \(\vec{B}\). Thus, we can take \(\vec{C}\) as a unit vector in the direction of \(\vec{A} \times \vec{B}\). ### Step 4: Calculate \(|(\vec{A} \times \vec{B}) \times \vec{C}|^2\) Using the vector triple product identity: \[ |(\vec{A} \times \vec{B}) \times \vec{C}|^2 = |\vec{A} \cdot \vec{C}|^2 |\vec{B}|^2 - |\vec{A} \cdot \vec{B}|^2 |\vec{C}|^2 \] Since \(\vec{C}\) is perpendicular to both \(\vec{A}\) and \(\vec{B}\): \[ \vec{A} \cdot \vec{C} = 0 \] Thus: \[ |(\vec{A} \times \vec{B}) \times \vec{C}|^2 = 0 \] ### Conclusion The value of \(|(\vec{A} \times \vec{B}) \times \vec{C}|^2\) is \(0\). ### Final Answer The correct option is (a) 0.

To solve the problem, we need to find the value of \(|(\vec{A} \times \vec{B}) \times \vec{C}|^2\) given that \(\vec{A} = \hat{i} + \hat{j} + 2\hat{k}\), \(\vec{B} = \hat{i} + 2\hat{j} + 2\hat{k}\), and \(|\vec{C}| = 1\) such that the expression \([\vec{A} \times \vec{B}, \vec{B} \times \vec{C}, \vec{C} \times \vec{A}]\) has a maximum value. ### Step 1: Calculate \(\vec{A} \times \vec{B}\) \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos
  • VECTORS; DEFINITION, GEOMETRY RELATED TO VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.1|25 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector vecc are such that (veca xx vecb)xx vecc =veca xx(vecb xx vecc) , then vector vecc may be

CENGAGE ENGLISH-VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS-DPP 2.4
  1. veca=2veci+vecj+veck, vecb=b(1)hati+b(2)hatj+b(3)hatk, veca xx vecb=...

    Text Solution

    |

  2. If veca,vecb,vecc,vecd are unit vectors such that veca.vecb=1/2, vecc....

    Text Solution

    |

  3. If veca,vecb,vecc,vecd be vectors such that [vecavecbvecc]=2 and (veca...

    Text Solution

    |

  4. Let (vecp xx vecq) xx vecp +(vecp.vecq)vecq=(x^(2)+y^(2))vecq + (14-4x...

    Text Solution

    |

  5. If veca, vecb,vecc are three non-coplanar vectors such that veca xx ve...

    Text Solution

    |

  6. Let hata and hatb be two unit vectors such that hata.hatb=1/3 and hata...

    Text Solution

    |

  7. Let a and c be unit vectors inclined at (pi)/(3) with each other. If (...

    Text Solution

    |

  8. if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such tha...

    Text Solution

    |

  9. veca, vecb, vecc are unit vectors such that if the angles between the ...

    Text Solution

    |

  10. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  11. If veca, vecb, vecc are non coplanar vectors and vecp, vecq, vecr are ...

    Text Solution

    |

  12. Let veca=hati-3hatj+4hatk, vecB=6hati+4hatj-8hatk, vecC=5hati+2hatj+5h...

    Text Solution

    |

  13. The volume of the parallelepiped whose coterminous edges are represent...

    Text Solution

    |

  14. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  15. If a, b, c are three non-zero vectors, then which of the following sta...

    Text Solution

    |

  16. Vectors veca, vecb, vecc are three unit vectors and vecc is equally in...

    Text Solution

    |

  17. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  18. veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc ar...

    Text Solution

    |

  19. Volume of the parallelopiped whose adjacent edges are vectors veca ...

    Text Solution

    |

  20. A vector along the bisector of angle between the vectors vecb and vec...

    Text Solution

    |