Home
Class 12
MATHS
If veca, vecb, vecc are non coplanar vec...

If `veca, vecb, vecc` are non coplanar vectors and `vecp, vecq, vecr` are reciprocal vectors, then
`(lveca+mvecb+nvecc).(lvecp+mvecq+nvecr)` is equal to

A

`l^(2)+m^(2)+n^(2)`

B

lm+mn+nl

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((l\vec{a} + m\vec{b} + n\vec{c}) \cdot (l\vec{p} + m\vec{q} + n\vec{r})\), where \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar vectors and \(\vec{p}, \vec{q}, \vec{r}\) are reciprocal vectors. ### Step-by-step Solution: 1. **Understanding Reciprocal Vectors**: - The reciprocal vectors can be expressed as: \[ \vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]}, \quad \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]}, \quad \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]} \] - Here, \([\vec{a}, \vec{b}, \vec{c}]\) denotes the scalar triple product, which is non-zero since the vectors are non-coplanar. 2. **Expanding the Dot Product**: - We expand the expression: \[ (l\vec{a} + m\vec{b} + n\vec{c}) \cdot (l\vec{p} + m\vec{q} + n\vec{r}) \] - This can be expanded as: \[ l^2 (\vec{a} \cdot \vec{p}) + lm (\vec{a} \cdot \vec{q}) + ln (\vec{a} \cdot \vec{r}) + ml (\vec{b} \cdot \vec{p}) + m^2 (\vec{b} \cdot \vec{q}) + mn (\vec{b} \cdot \vec{r}) + nl (\vec{c} \cdot \vec{p}) + nm (\vec{c} \cdot \vec{q}) + n^2 (\vec{c} \cdot \vec{r}) \] 3. **Evaluating Each Dot Product**: - Using the properties of reciprocal vectors: - \(\vec{a} \cdot \vec{p} = 1\) - \(\vec{a} \cdot \vec{q} = 0\) - \(\vec{a} \cdot \vec{r} = 0\) - \(\vec{b} \cdot \vec{p} = 0\) - \(\vec{b} \cdot \vec{q} = 1\) - \(\vec{b} \cdot \vec{r} = 0\) - \(\vec{c} \cdot \vec{p} = 0\) - \(\vec{c} \cdot \vec{q} = 0\) - \(\vec{c} \cdot \vec{r} = 1\) 4. **Substituting the Values**: - Substitute the values into the expanded expression: \[ l^2(1) + lm(0) + ln(0) + ml(0) + m^2(1) + mn(0) + nl(0) + nm(0) + n^2(1) \] - This simplifies to: \[ l^2 + m^2 + n^2 \] 5. **Final Result**: - Therefore, the value of \((l\vec{a} + m\vec{b} + n\vec{c}) \cdot (l\vec{p} + m\vec{q} + n\vec{r})\) is: \[ l^2 + m^2 + n^2 \] ### Final Answer: \[ \boxed{l^2 + m^2 + n^2} \]

To solve the problem, we need to evaluate the expression \((l\vec{a} + m\vec{b} + n\vec{c}) \cdot (l\vec{p} + m\vec{q} + n\vec{r})\), where \(\vec{a}, \vec{b}, \vec{c}\) are non-coplanar vectors and \(\vec{p}, \vec{q}, \vec{r}\) are reciprocal vectors. ### Step-by-step Solution: 1. **Understanding Reciprocal Vectors**: - The reciprocal vectors can be expressed as: \[ \vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]}, \quad \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]}, \quad \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]} ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos
  • VECTORS; DEFINITION, GEOMETRY RELATED TO VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.1|25 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors, then vecaxxvecp+vecbxxvecq+veccxxvecc equals

Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are vectors defined by the relations vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxveca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr . is equal to (A) 0 (B) 1 (C) 2 (D) 3

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

veca, vecb,vecc are non-coplanar vectors and vecp,vecq,vecr are defined as vecp = (vecb xx vecc)/([vecb vecc veca]),q=(vecc xx veca)/([vecc veca vecb]), vecr =(veca xx vecb)/([veca vecb vecc]) then (veca + vecb).vecp+(vecb+vecc).vecq + (vecc + veca).vecr is equal to.

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then [(veca', vecb', vecc')]=

Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, vecq and vecr be three vectors given by vecp=veca+vecb-2vecc, vecq=3veca-2vecb+vecc and vecr=veca-4vecb+2vecc If the volume of the parallelopiped determined by veca, vecb and vecc is V_(1) and that of the parallelopiped determined by vecp, vecq and vecr is V_(2) , then V_(2):V_(1)=

Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, vecq and vecr be three vectors given by vecp=veca+vecb-2vecc, vecq=3veca-2vecb+vecc and vecr=veca-4vcb+2vecc If the volume of the parallelopiped determined by veca, vecb and vecc is V_(1) and that of the parallelopiped determined by veca, vecq and vecr is V_(2) , then V_(2):V_(1)=

Statement 1: Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors. Stetement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then [(veca,vecb, vecc)]vecc+[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb=[(veca, vecb, vecc)]vecr

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

CENGAGE ENGLISH-VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS-DPP 2.4
  1. veca=2veci+vecj+veck, vecb=b(1)hati+b(2)hatj+b(3)hatk, veca xx vecb=...

    Text Solution

    |

  2. If veca,vecb,vecc,vecd are unit vectors such that veca.vecb=1/2, vecc....

    Text Solution

    |

  3. If veca,vecb,vecc,vecd be vectors such that [vecavecbvecc]=2 and (veca...

    Text Solution

    |

  4. Let (vecp xx vecq) xx vecp +(vecp.vecq)vecq=(x^(2)+y^(2))vecq + (14-4x...

    Text Solution

    |

  5. If veca, vecb,vecc are three non-coplanar vectors such that veca xx ve...

    Text Solution

    |

  6. Let hata and hatb be two unit vectors such that hata.hatb=1/3 and hata...

    Text Solution

    |

  7. Let a and c be unit vectors inclined at (pi)/(3) with each other. If (...

    Text Solution

    |

  8. if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such tha...

    Text Solution

    |

  9. veca, vecb, vecc are unit vectors such that if the angles between the ...

    Text Solution

    |

  10. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  11. If veca, vecb, vecc are non coplanar vectors and vecp, vecq, vecr are ...

    Text Solution

    |

  12. Let veca=hati-3hatj+4hatk, vecB=6hati+4hatj-8hatk, vecC=5hati+2hatj+5h...

    Text Solution

    |

  13. The volume of the parallelepiped whose coterminous edges are represent...

    Text Solution

    |

  14. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  15. If a, b, c are three non-zero vectors, then which of the following sta...

    Text Solution

    |

  16. Vectors veca, vecb, vecc are three unit vectors and vecc is equally in...

    Text Solution

    |

  17. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  18. veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc ar...

    Text Solution

    |

  19. Volume of the parallelopiped whose adjacent edges are vectors veca ...

    Text Solution

    |

  20. A vector along the bisector of angle between the vectors vecb and vec...

    Text Solution

    |