Home
Class 12
MATHS
Let veca=hati-3hatj+4hatk, vecB=6hati+4h...

Let `veca=hati-3hatj+4hatk`, `vecB=6hati+4hatj-8hatk`, `vecC=5hati+2hatj+5hatk` and a vector `vecR` satisfies `vecR xx vecB = vecC xx vecB`, `vecR.vecA=0`, then the value of `(|vecB|)/(|vecR-vecC|)` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and use vector operations. ### Given: - \(\vec{A} = \hat{i} - 3\hat{j} + 4\hat{k}\) - \(\vec{B} = 6\hat{i} + 4\hat{j} - 8\hat{k}\) - \(\vec{C} = 5\hat{i} + 2\hat{j} + 5\hat{k}\) - \(\vec{R} \times \vec{B} = \vec{C} \times \vec{B}\) - \(\vec{R} \cdot \vec{A} = 0\) ### Step 1: Use the cross product condition From the condition \(\vec{R} \times \vec{B} = \vec{C} \times \vec{B}\), we can rearrange it to: \[ \vec{R} \times \vec{B} - \vec{C} \times \vec{B} = \vec{0} \] This implies that: \[ (\vec{R} - \vec{C}) \times \vec{B} = \vec{0} \] This means that \(\vec{R} - \vec{C}\) is collinear with \(\vec{B}\). Therefore, we can write: \[ \vec{R} - \vec{C} = \lambda \vec{B} \quad \text{for some scalar } \lambda \] Hence, we can express \(\vec{R}\) as: \[ \vec{R} = \lambda \vec{B} + \vec{C} \] ### Step 2: Use the dot product condition Now, we use the condition \(\vec{R} \cdot \vec{A} = 0\): \[ (\lambda \vec{B} + \vec{C}) \cdot \vec{A} = 0 \] Expanding this gives: \[ \lambda (\vec{B} \cdot \vec{A}) + \vec{C} \cdot \vec{A} = 0 \] Thus, we can solve for \(\lambda\): \[ \lambda = -\frac{\vec{C} \cdot \vec{A}}{\vec{B} \cdot \vec{A}} \] ### Step 3: Calculate \(\vec{C} \cdot \vec{A}\) and \(\vec{B} \cdot \vec{A}\) Calculating \(\vec{C} \cdot \vec{A}\): \[ \vec{C} \cdot \vec{A} = (5)(1) + (2)(-3) + (5)(4) = 5 - 6 + 20 = 19 \] Calculating \(\vec{B} \cdot \vec{A}\): \[ \vec{B} \cdot \vec{A} = (6)(1) + (4)(-3) + (-8)(4) = 6 - 12 - 32 = -38 \] ### Step 4: Substitute the dot products into \(\lambda\) Now substituting these values into the equation for \(\lambda\): \[ \lambda = -\frac{19}{-38} = \frac{19}{38} = \frac{1}{2} \] ### Step 5: Find \(|\vec{R} - \vec{C}|\) From \(\vec{R} - \vec{C} = \lambda \vec{B}\): \[ |\vec{R} - \vec{C}| = |\lambda \vec{B}| = \left|\frac{1}{2} \vec{B}\right| = \frac{1}{2} |\vec{B}| \] ### Step 6: Find the value of \(\frac{|\vec{B}|}{|\vec{R} - \vec{C}|}\) Now we can find the required ratio: \[ \frac{|\vec{B}|}{|\vec{R} - \vec{C}|} = \frac{|\vec{B}|}{\frac{1}{2} |\vec{B}|} = 2 \] ### Final Answer: The value of \(\frac{|\vec{B}|}{|\vec{R} - \vec{C}|}\) is \(2\). ---

To solve the problem step by step, we will follow the given conditions and use vector operations. ### Given: - \(\vec{A} = \hat{i} - 3\hat{j} + 4\hat{k}\) - \(\vec{B} = 6\hat{i} + 4\hat{j} - 8\hat{k}\) - \(\vec{C} = 5\hat{i} + 2\hat{j} + 5\hat{k}\) - \(\vec{R} \times \vec{B} = \vec{C} \times \vec{B}\) - \(\vec{R} \cdot \vec{A} = 0\) ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos
  • VECTORS; DEFINITION, GEOMETRY RELATED TO VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.1|25 Videos

Similar Questions

Explore conceptually related problems

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecb and vecr.veca =0 then find the value of vecr .vecb .

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

CENGAGE ENGLISH-VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS-DPP 2.4
  1. veca=2veci+vecj+veck, vecb=b(1)hati+b(2)hatj+b(3)hatk, veca xx vecb=...

    Text Solution

    |

  2. If veca,vecb,vecc,vecd are unit vectors such that veca.vecb=1/2, vecc....

    Text Solution

    |

  3. If veca,vecb,vecc,vecd be vectors such that [vecavecbvecc]=2 and (veca...

    Text Solution

    |

  4. Let (vecp xx vecq) xx vecp +(vecp.vecq)vecq=(x^(2)+y^(2))vecq + (14-4x...

    Text Solution

    |

  5. If veca, vecb,vecc are three non-coplanar vectors such that veca xx ve...

    Text Solution

    |

  6. Let hata and hatb be two unit vectors such that hata.hatb=1/3 and hata...

    Text Solution

    |

  7. Let a and c be unit vectors inclined at (pi)/(3) with each other. If (...

    Text Solution

    |

  8. if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such tha...

    Text Solution

    |

  9. veca, vecb, vecc are unit vectors such that if the angles between the ...

    Text Solution

    |

  10. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  11. If veca, vecb, vecc are non coplanar vectors and vecp, vecq, vecr are ...

    Text Solution

    |

  12. Let veca=hati-3hatj+4hatk, vecB=6hati+4hatj-8hatk, vecC=5hati+2hatj+5h...

    Text Solution

    |

  13. The volume of the parallelepiped whose coterminous edges are represent...

    Text Solution

    |

  14. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  15. If a, b, c are three non-zero vectors, then which of the following sta...

    Text Solution

    |

  16. Vectors veca, vecb, vecc are three unit vectors and vecc is equally in...

    Text Solution

    |

  17. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  18. veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc ar...

    Text Solution

    |

  19. Volume of the parallelopiped whose adjacent edges are vectors veca ...

    Text Solution

    |

  20. A vector along the bisector of angle between the vectors vecb and vec...

    Text Solution

    |