Home
Class 12
MATHS
The volume of the parallelepiped whose c...

The volume of the parallelepiped whose coterminous edges are represented by the vectors `2vecb xx vecc, 3vecc xx veca` and `4veca xx vecb` where `veca=(1+sintheta)hati+costhetahatj+sin2thetahatk` , `vecb=sin(theta+(2pi)/(3))hati+cos(theta+(2pi)/(3))hatj+sin(2theta+(4pi)/(3))hatk`, `vecc=sin(theta-(2pi)/(3))hati+cos(theta-(2pi)/(3))hatj + sin(2theta-(4pi)/(3))hatk` is 18 cubic units, then the values of `theta`, in the interval `(0,pi/2)`, is/are

A

`pi/9`

B

`(2pi)/(9)`

C

`pi/3`

D

`(4pi)/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the volume of the parallelepiped formed by the vectors given, and then determine the values of \(\theta\) that satisfy the condition of the volume being 18 cubic units. ### Step 1: Write the volume formula The volume \(V\) of the parallelepiped formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) can be expressed using the scalar triple product: \[ V = |\vec{a} \cdot (\vec{b} \times \vec{c})| \] In this case, we have the vectors defined as: - \(\vec{a} = (1 + \sin \theta) \hat{i} + \cos \theta \hat{j} + \sin 2\theta \hat{k}\) - \(\vec{b} = \sin\left(\theta + \frac{2\pi}{3}\right) \hat{i} + \cos\left(\theta + \frac{2\pi}{3}\right) \hat{j} + \sin\left(2\theta + \frac{4\pi}{3}\right) \hat{k}\) - \(\vec{c} = \sin\left(\theta - \frac{2\pi}{3}\right) \hat{i} + \cos\left(\theta - \frac{2\pi}{3}\right) \hat{j} + \sin\left(2\theta - \frac{4\pi}{3}\right) \hat{k}\) ### Step 2: Set up the volume equation Given that the volume is \(18\) cubic units, we can express this as: \[ |2(\vec{b} \times \vec{c}) + 3(\vec{c} \times \vec{a}) + 4(\vec{a} \times \vec{b})| = 18 \] ### Step 3: Simplify the volume expression We can factor out the coefficients from the volume expression: \[ |2(\vec{b} \times \vec{c}) + 3(\vec{c} \times \vec{a}) + 4(\vec{a} \times \vec{b})| = 18 \] This can be rewritten as: \[ \frac{1}{6} |2(\vec{b} \times \vec{c}) + 3(\vec{c} \times \vec{a}) + 4(\vec{a} \times \vec{b})| = 18 \] Thus, \[ |2(\vec{b} \times \vec{c}) + 3(\vec{c} \times \vec{a}) + 4(\vec{a} \times \vec{b})| = 108 \] ### Step 4: Calculate the scalar triple product To find the scalar triple product, we can use the determinant of the matrix formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). However, given the complexity of the vectors, we can use the relationship: \[ abc = \sqrt{3} \cos(3\theta) \] We know from the volume condition: \[ \sqrt{3} \cos(3\theta) = \frac{\sqrt{3}}{2} \] Thus, \[ \cos(3\theta) = \frac{1}{2} \] ### Step 5: Solve for \(3\theta\) The values of \(3\theta\) that satisfy \(\cos(3\theta) = \frac{1}{2}\) are: \[ 3\theta = \frac{\pi}{3}, \frac{5\pi}{3}, \text{ or } 4\pi/3 \] ### Step 6: Solve for \(\theta\) Dividing these values by \(3\) gives us: \[ \theta = \frac{\pi}{9}, \frac{5\pi}{9}, \text{ or } \frac{4\pi}{9} \] ### Step 7: Check the interval Since we are looking for values in the interval \((0, \frac{\pi}{2})\), we only consider: \[ \theta = \frac{\pi}{9} \] ### Final Answer Thus, the value of \(\theta\) in the interval \((0, \frac{\pi}{2})\) is: \[ \theta = \frac{\pi}{9} \]

To solve the problem, we need to find the volume of the parallelepiped formed by the vectors given, and then determine the values of \(\theta\) that satisfy the condition of the volume being 18 cubic units. ### Step 1: Write the volume formula The volume \(V\) of the parallelepiped formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) can be expressed using the scalar triple product: \[ V = |\vec{a} \cdot (\vec{b} \times \vec{c})| \] In this case, we have the vectors defined as: ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos
  • VECTORS; DEFINITION, GEOMETRY RELATED TO VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.1|25 Videos

Similar Questions

Explore conceptually related problems

The volume of the parallelepiped whose coterminous edges are represented by the vectors 2vecb xx vecc, 3vecc xx veca and 4veca xx vecb where vecb=sin(theta+(2pi)/(3))hati+cos(theta+(2pi)/(3))hatj+sin(2theta+(4pi)/(3))hatk , vecc=sin(theta-(2pi)/(3))hati+cos(theta-(2pi)/(3))hatj + sin(2theta-(4pi)/(3))hatk is 18 cubic units, then the values of theta , in the interval (0,pi/2) , is/are

The value of the determinant |(sintheta, costheta, sin2theta) , (sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin(2theta+(4pi)/3)) , (sin(theta-(2pi)/3), cos(theta-(2pi)/3), sin(2theta-(4pi)/3))|

Prove that tan(theta+(pi)/(6))+cot(theta-(pi)/(6))=(1)/(sin2theta-sin.(pi)/(3))

If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a sinb theta . Find the value of |(b)/(a)| .

Find the volume of a parallelopiped whose edges are represented by the vectors: veca =2hati-3hatj-4hatk, vecb=hati+2hatj-2hatk, and vecc=3hati+hatj+2hatk .

Solve: sin2theta=sin((2pi)/(3)-theta)

Show that 4 sin ((pi)/(3) - theta ) sin ((pi)/(3) + theta) =3-4 sin ^(2) theta

Prove that 4sinthetasin(pi/3+theta)sin((2pi)/3+theta)=sin3theta

Prove that: cos^2(pi/4-theta)-sin^2(pi/4-theta)=sin2theta

If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3)( theta + (4pi)/(3)) then the value of f((pi)/(18)) + f((7pi)/(18)) is ___________.

CENGAGE ENGLISH-VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS-DPP 2.4
  1. veca=2veci+vecj+veck, vecb=b(1)hati+b(2)hatj+b(3)hatk, veca xx vecb=...

    Text Solution

    |

  2. If veca,vecb,vecc,vecd are unit vectors such that veca.vecb=1/2, vecc....

    Text Solution

    |

  3. If veca,vecb,vecc,vecd be vectors such that [vecavecbvecc]=2 and (veca...

    Text Solution

    |

  4. Let (vecp xx vecq) xx vecp +(vecp.vecq)vecq=(x^(2)+y^(2))vecq + (14-4x...

    Text Solution

    |

  5. If veca, vecb,vecc are three non-coplanar vectors such that veca xx ve...

    Text Solution

    |

  6. Let hata and hatb be two unit vectors such that hata.hatb=1/3 and hata...

    Text Solution

    |

  7. Let a and c be unit vectors inclined at (pi)/(3) with each other. If (...

    Text Solution

    |

  8. if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such tha...

    Text Solution

    |

  9. veca, vecb, vecc are unit vectors such that if the angles between the ...

    Text Solution

    |

  10. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  11. If veca, vecb, vecc are non coplanar vectors and vecp, vecq, vecr are ...

    Text Solution

    |

  12. Let veca=hati-3hatj+4hatk, vecB=6hati+4hatj-8hatk, vecC=5hati+2hatj+5h...

    Text Solution

    |

  13. The volume of the parallelepiped whose coterminous edges are represent...

    Text Solution

    |

  14. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  15. If a, b, c are three non-zero vectors, then which of the following sta...

    Text Solution

    |

  16. Vectors veca, vecb, vecc are three unit vectors and vecc is equally in...

    Text Solution

    |

  17. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  18. veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc ar...

    Text Solution

    |

  19. Volume of the parallelopiped whose adjacent edges are vectors veca ...

    Text Solution

    |

  20. A vector along the bisector of angle between the vectors vecb and vec...

    Text Solution

    |