Home
Class 12
MATHS
veca=2hati+hatj+2hatk, vecb=hati-hatj+ha...

`veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk` and non zero vector `vecc` are such that `(veca xx vecb) xx vecc = veca xx (vecb xx vecc)`.
Then vector `vecc` may be given as

A

(a) `4hati+2hatj+4hatk`

B

(b) `4hati-2hatj+4hatk`

C

(c) `hati+hatj+hatk`

D

(d) `hati-4hatj+hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \vec{c} \) such that the equation \[ (\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c}) \] holds true, given the vectors: \[ \vec{a} = 2\hat{i} + \hat{j} + 2\hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + \hat{k} \] ### Step 1: Compute \( \vec{a} \times \vec{b} \) Using the determinant method to compute the cross product: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 2 \\ 1 & -1 & 1 \end{vmatrix} \] Calculating the determinant: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 2 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = (1)(1) - (2)(-1) = 1 + 2 = 3 \) 2. \( \begin{vmatrix} 2 & 2 \\ 1 & 1 \end{vmatrix} = (2)(1) - (2)(1) = 2 - 2 = 0 \) 3. \( \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = (2)(-1) - (1)(1) = -2 - 1 = -3 \) Putting it all together: \[ \vec{a} \times \vec{b} = 3\hat{i} - 0\hat{j} - 3\hat{k} = 3\hat{i} - 3\hat{k} \] ### Step 2: Rewrite the equation Now we have: \[ (\vec{a} \times \vec{b}) \times \vec{c} = (3\hat{i} - 3\hat{k}) \times \vec{c} \] Using the formula for the cross product, we can express this as: \[ = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 0 & -3 \\ c_1 & c_2 & c_3 \end{vmatrix} \] Calculating this determinant gives us: \[ = \hat{i} \begin{vmatrix} 0 & -3 \\ c_2 & c_3 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & -3 \\ c_1 & c_3 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 0 \\ c_1 & c_2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 0 & -3 \\ c_2 & c_3 \end{vmatrix} = (0)(c_3) - (-3)(c_2) = 3c_2 \) 2. \( \begin{vmatrix} 3 & -3 \\ c_1 & c_3 \end{vmatrix} = (3)(c_3) - (-3)(c_1) = 3c_3 + 3c_1 = 3(c_1 + c_3) \) 3. \( \begin{vmatrix} 3 & 0 \\ c_1 & c_2 \end{vmatrix} = (3)(c_2) - (0)(c_1) = 3c_2 \) Putting it together: \[ (\vec{a} \times \vec{b}) \times \vec{c} = 3c_2\hat{i} - 3(c_1 + c_3)\hat{j} + 3c_2\hat{k} \] ### Step 3: Compute \( \vec{b} \times \vec{c} \) Now we compute \( \vec{b} \times \vec{c} \): \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ c_1 & c_2 & c_3 \end{vmatrix} \] Calculating this determinant gives us: \[ = \hat{i} \begin{vmatrix} -1 & 1 \\ c_2 & c_3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ c_1 & c_3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ c_1 & c_2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 1 \\ c_2 & c_3 \end{vmatrix} = (-1)(c_3) - (1)(c_2) = -c_3 - c_2 \) 2. \( \begin{vmatrix} 1 & 1 \\ c_1 & c_3 \end{vmatrix} = (1)(c_3) - (1)(c_1) = c_3 - c_1 \) 3. \( \begin{vmatrix} 1 & -1 \\ c_1 & c_2 \end{vmatrix} = (1)(c_2) - (-1)(c_1) = c_2 + c_1 \) Putting it together: \[ \vec{b} \times \vec{c} = (-c_3 - c_2)\hat{i} - (c_3 - c_1)\hat{j} + (c_2 + c_1)\hat{k} \] ### Step 4: Compute \( \vec{a} \times (\vec{b} \times \vec{c}) \) Now we compute: \[ \vec{a} \times (\vec{b} \times \vec{c}) = \vec{a} \times [(-c_3 - c_2)\hat{i} - (c_3 - c_1)\hat{j} + (c_2 + c_1)\hat{k}] \] Using the determinant method again: \[ = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 2 \\ -c_3 - c_2 & -(c_3 - c_1) & (c_2 + c_1) \end{vmatrix} \] Calculating this determinant gives us: \[ = \hat{i} \begin{vmatrix} 1 & 2 \\ -(c_3 - c_1) & (c_2 + c_1) \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 2 \\ -c_3 - c_2 & (c_2 + c_1) \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ -c_3 - c_2 & -(c_3 - c_1) \end{vmatrix} \] ### Step 5: Set the two expressions equal Now we set the two expressions equal to each other and solve for \( \vec{c} \). After simplifying, we will find that: \[ \vec{c} = \lambda \vec{a} \] where \( \lambda \) is a constant. This means that \( \vec{c} \) is parallel to \( \vec{a} \). ### Conclusion The vector \( \vec{c} \) may be expressed as: \[ \vec{c} = k(2\hat{i} + \hat{j} + 2\hat{k}) \] for some non-zero scalar \( k \).

To solve the problem, we need to find the vector \( \vec{c} \) such that the equation \[ (\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c}) \] holds true, given the vectors: ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    CENGAGE ENGLISH|Exercise All Questions|532 Videos
  • VECTORS; DEFINITION, GEOMETRY RELATED TO VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.1|25 Videos

Similar Questions

Explore conceptually related problems

Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector vecc are such that (veca xx vecb)xx vecc =veca xx(vecb xx vecc) , then vector vecc may be

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

Let veca =2hati +hatj -2hatk and vecb = hati +hatj . " Let " vecc be vector such that |vecc -veca|=3, |(veca xx vecb) xx vecc|=3 and the angle between vecc and veca xx vecb " be " 30^(@) Then , veca . Vecc is equal to

if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such that [veca xx vecb vecb xx vecc vecc xx veca] has maximum value, then the value of |(veca xx vecb) xx vecc|^(2) is (a) 0 (b) 1 (c) 4/3 (d) none of these

If vecaa=hati+2hatj+3hatk, vecb=2hati-hatj+hatk and vecc=hati+hatj-2hatk, verify that vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc.

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

CENGAGE ENGLISH-VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS-DPP 2.4
  1. veca=2veci+vecj+veck, vecb=b(1)hati+b(2)hatj+b(3)hatk, veca xx vecb=...

    Text Solution

    |

  2. If veca,vecb,vecc,vecd are unit vectors such that veca.vecb=1/2, vecc....

    Text Solution

    |

  3. If veca,vecb,vecc,vecd be vectors such that [vecavecbvecc]=2 and (veca...

    Text Solution

    |

  4. Let (vecp xx vecq) xx vecp +(vecp.vecq)vecq=(x^(2)+y^(2))vecq + (14-4x...

    Text Solution

    |

  5. If veca, vecb,vecc are three non-coplanar vectors such that veca xx ve...

    Text Solution

    |

  6. Let hata and hatb be two unit vectors such that hata.hatb=1/3 and hata...

    Text Solution

    |

  7. Let a and c be unit vectors inclined at (pi)/(3) with each other. If (...

    Text Solution

    |

  8. if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such tha...

    Text Solution

    |

  9. veca, vecb, vecc are unit vectors such that if the angles between the ...

    Text Solution

    |

  10. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  11. If veca, vecb, vecc are non coplanar vectors and vecp, vecq, vecr are ...

    Text Solution

    |

  12. Let veca=hati-3hatj+4hatk, vecB=6hati+4hatj-8hatk, vecC=5hati+2hatj+5h...

    Text Solution

    |

  13. The volume of the parallelepiped whose coterminous edges are represent...

    Text Solution

    |

  14. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  15. If a, b, c are three non-zero vectors, then which of the following sta...

    Text Solution

    |

  16. Vectors veca, vecb, vecc are three unit vectors and vecc is equally in...

    Text Solution

    |

  17. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  18. veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc ar...

    Text Solution

    |

  19. Volume of the parallelopiped whose adjacent edges are vectors veca ...

    Text Solution

    |

  20. A vector along the bisector of angle between the vectors vecb and vec...

    Text Solution

    |