Home
Class 12
MATHS
The shorteast distance from (1, 1, 1) to...

The shorteast distance from `(1, 1, 1)` to the line of intersection of the pair of planes `xy+yz+zx+y^2=0` is

A

`sqrt(8/3)`

B

`2/sqrt(3)`

C

`1/sqrt(3)`

D

`2/3`

Text Solution

Verified by Experts

The correct Answer is:
A

`xy+yz+y^(2)=0`
`rArr y(x+y)+z(x+y)=0`
`rArr` Line of intersection is `x=-y=z`.
Distance of OP on line having direction ratios 1,-1 is `1/sqrt(3)`.
Then required shortest distance `=sqrt(3-1/3)=sqrt(8/3)`.
Promotional Banner

Topper's Solved these Questions

  • EQUATION OF PLANE AND ITS APPLICATIONS -I

    CENGAGE ENGLISH|Exercise DPP 3.3|22 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos

Similar Questions

Explore conceptually related problems

The point of intersection of the two lines given by 2x^2-5xy +2y^2-3x+3y+1=0 is

The equation of the line passing through (1, 1, 1) and perpendicular to the line of intersection of the planes x+2y-4z=0 and 2x-y+2z=0 is

Find an equation for the plane through P_(0)=(1, 0, 1) and passing through the line of intersection of the planes x +y - 2z = 1 and x + 3y - z = 4 .

The equation of a plane passing through the line of intersection of the planes x+2y+3z = 2 and x - y + z = 3 and at a distance 2/sqrt 3 from the point (3, 1, -1) is

The equation of a plane passing through the line of intersection of the planes x+2y+3z = 2 and x -y+z = 3 and at a distance 2/ √ 3 from the point (3, 1, -1) is ?

Find the equation of the plane through the line of intersection of the planes x+y+z=1 and 2x+3y+4z=5 which is perpendicular to the plane x-y+z=0 . Then find the distance of plane thus obtained from the point A(1,3,6) .

The equation of a plane containing the line of intersection of the planes 2x-y-4=0 and y+2z-4=0 and passing through the point (1, 1, 0) is

The equation of the plane passing through the line of intersection of the planes x+y+z+3 =0 and 2x-y + 3z +2 =0 and parallel to the line (x)/(1) = (y)/(2) = (z)/(3) is

The distance of the point (-1, -5, -10) from the point of intersection of the line (x-2)/(2)=(y+1)/(4)=(z-2)/(12) and the plane x-y+z=5 is

Find the equation of a plane containing the line of intersection of the planes x+y+z-6=0a n d2x+3y+4z+5=0 passing through (1,1,1) .