Home
Class 12
MATHS
Let A=(1,1,-1),B=(0,2,1) be two given po...

Let `A=(1,1,-1),B=(0,2,1)` be two given points. Also, let P:`x+y+z=0` be a plane.
If `A^(')` and `B^(')` are the feet of perpendicular from A and B, respectively, on the plane 'P' then `A^(')B^(')` equals

A

`sqrt(14)/3`

B

`sqrt(5/3)`

C

`sqrt(3)`

D

`sqrt(2/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the distance \( A'B' \) where \( A' \) and \( B' \) are the feet of the perpendiculars from points \( A \) and \( B \) to the plane \( P: x + y + z = 0 \), we will follow these steps: ### Step 1: Identify the coordinates of points A and B Given: - \( A = (1, 1, -1) \) - \( B = (0, 2, 1) \) ### Step 2: Determine the normal vector of the plane The equation of the plane is \( x + y + z = 0 \). The normal vector \( \vec{n} \) of the plane can be derived from the coefficients of \( x, y, z \): - \( \vec{n} = (1, 1, 1) \) ### Step 3: Calculate the foot of the perpendicular from point A to the plane Using the formula for the foot of the perpendicular from a point \( (x_1, y_1, z_1) \) to the plane \( Ax + By + Cz + D = 0 \): \[ \frac{x - x_1}{A} = \frac{y - y_1}{B} = \frac{z - z_1}{C} = -\frac{Ax_1 + By_1 + Cz_1 + D}{A^2 + B^2 + C^2} \] For point \( A(1, 1, -1) \): - \( A = 1, B = 1, C = 1, D = 0 \) - \( x_1 = 1, y_1 = 1, z_1 = -1 \) Calculating \( Ax_1 + By_1 + Cz_1 + D \): \[ 1 \cdot 1 + 1 \cdot 1 + 1 \cdot (-1) + 0 = 1 + 1 - 1 + 0 = 1 \] Now substituting into the formula: \[ \frac{x - 1}{1} = \frac{y - 1}{1} = \frac{z + 1}{1} = -\frac{1}{3} \] This gives us: \[ x - 1 = -\frac{1}{3} \implies x = \frac{2}{3} \] \[ y - 1 = -\frac{1}{3} \implies y = \frac{2}{3} \] \[ z + 1 = -\frac{1}{3} \implies z = -\frac{4}{3} \] Thus, the coordinates of \( A' \) are: \[ A' = \left( \frac{2}{3}, \frac{2}{3}, -\frac{4}{3} \right) \] ### Step 4: Calculate the foot of the perpendicular from point B to the plane For point \( B(0, 2, 1) \): - \( x_1 = 0, y_1 = 2, z_1 = 1 \) Calculating \( Ax_1 + By_1 + Cz_1 + D \): \[ 1 \cdot 0 + 1 \cdot 2 + 1 \cdot 1 + 0 = 0 + 2 + 1 + 0 = 3 \] Substituting into the formula: \[ \frac{x - 0}{1} = \frac{y - 2}{1} = \frac{z - 1}{1} = -\frac{3}{3} = -1 \] This gives us: \[ x = -1 \] \[ y - 2 = -1 \implies y = 1 \] \[ z - 1 = -1 \implies z = 0 \] Thus, the coordinates of \( B' \) are: \[ B' = (-1, 1, 0) \] ### Step 5: Calculate the distance \( A'B' \) Using the distance formula: \[ A'B' = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2} \] Substituting the coordinates of \( A' \) and \( B' \): \[ A'B' = \sqrt{\left( \frac{2}{3} - (-1) \right)^2 + \left( \frac{2}{3} - 1 \right)^2 + \left( -\frac{4}{3} - 0 \right)^2} \] Calculating each term: \[ = \sqrt{\left( \frac{2}{3} + 1 \right)^2 + \left( \frac{2}{3} - 1 \right)^2 + \left( -\frac{4}{3} \right)^2} \] \[ = \sqrt{\left( \frac{5}{3} \right)^2 + \left( -\frac{1}{3} \right)^2 + \left( -\frac{4}{3} \right)^2} \] \[ = \sqrt{\frac{25}{9} + \frac{1}{9} + \frac{16}{9}} = \sqrt{\frac{42}{9}} = \frac{\sqrt{42}}{3} \] Thus, the distance \( A'B' \) is: \[ \frac{\sqrt{42}}{3} \] ### Final Answer The distance \( A'B' \) equals \( \frac{\sqrt{42}}{3} \).
Promotional Banner

Topper's Solved these Questions

  • EQUATION OF PLANE AND ITS APPLICATIONS -I

    CENGAGE ENGLISH|Exercise DPP 3.3|22 Videos
  • FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|7 Videos

Similar Questions

Explore conceptually related problems

Show that a x+b y+r=0,b y+c z+p=0a n dc z+a x+q=0 are perpendicular to x-y ,y-za n dz-x planes, respectively.

Show that a x+b y+r=0,b y+c z+p=0a n dc z+a x+q=0 are perpendicular to x-y ,y-za n dz-x planes, respectively.

Let A(1, 1, 1), B(3, 7, 4) and C (-1, 3, 0) be three points in a plane. The co-ordinates of the foot of perpendicular drawn from point C to the line segment AB is

if P is the length of perpendicular from origin to the line x/a+y/b=1 then prove that 1/(a^2)+1/(b^2)=1/(p^2)

P is a point (a, b, c). Let A, B, C be images of Pin y-z, z-x and x-y planes respectively, then the equation of the plane ABC is

Let A,B,C be the feet of perpendicular drawn from a point P to x,y and z-axes respectively. Find the coordinates of A,B,C if coordinates of P are : (3,-5,1)

Let A be the foot of the perpendicular from the origin to the plane x-2y+2z+6=0 and B(0, -1, -4) be a point on the plane. Then, the length of AB is

Let A,B,C be the feet of perpendicular drawn from a point P to x,y and z-axes respectively. Find the coordinates of A,B,C if coordinates of P are : (3,4,2)

Let A,B,C be the feet of perpendicular drawn from a point P to x,y and z-axes respectively. Find the coordinates of A,B,C if coordinates of P are : (4,-2,-6)

Let A,B,C be the feet of perpendicular drawn from a point P to x,y and z-axes respectively. Find the coordinates of A,B,C if coordinates of P are : (4,-3,-7)