Home
Class 12
MATHS
If x + y + z = 12, x^(2) + Y^(2) + z^(2)...

If `x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96` and `(1)/(x)+(1)/(y)+(1)/(z)= 36` . Then find the value `x^(3) + y^(3)+z^(3).`

Text Solution

AI Generated Solution

To find the value of \( x^3 + y^3 + z^3 \) given the equations: 1. \( x + y + z = 12 \) 2. \( x^2 + y^2 + z^2 = 96 \) 3. \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 36 \) We can use the identity: ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLES|14 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.1|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|6 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

If x=1, y=2 and z=3 , find the value of: x^3-z^3+y^3

If x^(3) + y^(3) + z^(3) = 3xyz and x + y + z = 0 , find the value of : ((x+y)^(2))/(xy) + ((y+z)^(2))/(yz) + ((z+x)^(2))/(zx)

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

If x+y+z=12 and x^2+y^2+z^2=96 and 1/x+1/y+1/z=36 , then the value x^3+y^3+z^3 divisible by prime number is________.

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, find the value of x^2+y^2+z^2

If x = 2, y = 3 and z = -1, find the values of : x-:y

If x = 2, y = 3 and z = -1, find the values of : (xy)/(z)

If sin^-1x+sin^-1y+sin^-1z=(3pi)/2 , then find the value of x^2+y^2+z^2

If x+y+z=1,x y+y z+z x=-1 and x y z=-1, find the value of x^3+y^3+z^3dot

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2