Home
Class 12
MATHS
If f(x)=(a1x+b1)^2+(a2x+b2)^2+...+(an x+...

If `f(x)=(a_1x+b_1)^2+(a_2x+b_2)^2+...+(a_n x+b_n)^2` , then prove that `(a_1b_1+a_2b_2+...+a_n b_n)^2lt=(a_1^ 2+a_2^ 2+...+a_ n^2)(b_1^ 2+b_2^ 2+..+b_ n^2)dot`

Text Solution

Verified by Experts

Given,
`f(x) = (a_(1)x + b_(1))^(2) + (a_(2)x+b_(2))^(2) + ...+ (a_(n)x + b_(n))^(2)` (1)
or `f(x) = (a_1^(2) + a_(2)^(2) + ... + a_(n)^(2))x^(2) + 2(a_(1) b_(1) + a_(2) b_(2) + ... + a_(n) b_(n) x + (b_(1)^(2) + b_(2)^(2) + ... + b_(n)^(2) )` (2)
From (1), `f(x) ge0, AA x in` R . Hence, from (2), we have
` (a_1^(2) + a_(2)^(2) + ... + a_(n)^(2))x^(2) + 2(a_(1) b_(1) + a_(2) b_(2) + ... + a_(n) b_(n)) x + (b_(1)^(2) + b_(2)^(2) + ... + b_(n)^(2) )ge 0 AAx in`R
Discrimnant of tis corresponding equation is
D `le 0 (therefore` cofficient of `x^(2)` is positive )
`(a_(1)b_(1) + a_(2) b_(2) + ... + a_(n)b_(n))^(2) le (a_1^(2) + a_(2)^(2) + ... + a_(n)^(2)) (b_(1)^(2)+b_(2)^(2) + ... + b_(n)^(2))`
or `(a_(1)b_(1) + a_(2) b_(2) + ... + a_(n)b_(n))^(2) le (a_1^(2) + a_(2)^(2) + ... + a_(n)^(2)) (b_(1)^(2)+b_(2)^(2) + ... + b_(n)^(2))`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.1|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.2|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise ILLUSTRATION|122 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (a_1+ib_1)(a_2+ib_2).....(a_n+ib_n)=A+iB , then (a_1^2+b_1^2)(a_2^2+b_2^2)......(a_n^2+b_n^2) is equal to (A) 1 (B) (A^2+B^2) (C) (A+B) (D) (1/A^2+1/B^2)

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 +a_1 +a_2 + ……+a_(2n) = 1

If the points (a_1, b_1),\ \ (a_2, b_2) and (a_1+a_2,\ b_1+b_2) are collinear, show that a_1b_2=a_2b_1 .

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

Given that (1+x+x^2)^n=a_0+a_1x+a_2x^2+.....+a_(2n)x^(2n) find i) a_0 + a_1 +a_2 .. . . .+ a_(2n) ii) a_0 - a_1 + a_2 - a_3 . . . . + a_(2n) iii) (a_0)^2 - (a_1)^2 . . . . .+ (a_(2n))^2

If (1-x+x^2)^n=a_0+a_1x+a_2x^2+ .........+a_(2n)x^(2n),\ find the value of a_0+a_2+a_4+........+a_(2n)dot

Suppose p(x)=a_0+a_1x+a_2x^2+...+a_n x^ndot If |p(x)|lt=|e^(x-1)-1| for all xgeq0, prove that |a_1+2a_2+...+n a_n|lt=1.

If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is (a_1-a_2)x+(b_1-b_2)y+c=0 , then the value of c is a a2-a2 2+b1 2-b2 2 sqrt(a1 2+b1 2-a2 2-b2 2) 1/2(a1 2+a2 2+b1 2+b2 2) 1/2(a2 2+b2 2-a1 2-b1 2)