Home
Class 12
MATHS
Let the equation x^(5) + x^(3) + x^(2) ...

Let the equation `x^(5) + x^(3) + x^(2) + 2 = 0` has roots `x_(1), x_(2), x_(3), x_(4) and x_(5),` then find the value of `(x_(1)^(2)-1)(x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^5 + x^3 + x^2 + 2 = 0 \) and find the value of \( (x_1^2 - 1)(x_2^2 - 1)(x_3^2 - 1)(x_4^2 - 1)(x_5^2 - 1) \), where \( x_1, x_2, x_3, x_4, x_5 \) are the roots of the equation, we can follow these steps: ### Step 1: Substitute \( x = 1 \) We start by substituting \( x = 1 \) into the original equation: \[ 1^5 + 1^3 + 1^2 + 2 = 1 + 1 + 1 + 2 = 5 \] This gives us: \[ 5 = (1 - x_1)(1 - x_2)(1 - x_3)(1 - x_4)(1 - x_5) \] ### Step 2: Substitute \( x = -1 \) Next, we substitute \( x = -1 \) into the original equation: \[ (-1)^5 + (-1)^3 + (-1)^2 + 2 = -1 - 1 + 1 + 2 = 1 \] This gives us: \[ 1 = (-1 - x_1)(-1 - x_2)(-1 - x_3)(-1 - x_4)(-1 - x_5) \] Factoring out the negative signs, we have: \[ 1 = (-1)(-1)(-1)(-1)(-1) \cdot (1 + x_1)(1 + x_2)(1 + x_3)(1 + x_4)(1 + x_5) \] Thus: \[ 1 = -(1 + x_1)(1 + x_2)(1 + x_3)(1 + x_4)(1 + x_5) \] ### Step 3: Set Up the Equations From the above substitutions, we have two equations: 1. \( 5 = (1 - x_1)(1 - x_2)(1 - x_3)(1 - x_4)(1 - x_5) \) 2. \( 1 = -(1 + x_1)(1 + x_2)(1 + x_3)(1 + x_4)(1 + x_5) \) ### Step 4: Multiply the Two Equations Now, we multiply both equations together: \[ 5 \cdot 1 = (1 - x_1)(1 - x_2)(1 - x_3)(1 - x_4)(1 - x_5) \cdot -(1 + x_1)(1 + x_2)(1 + x_3)(1 + x_4)(1 + x_5) \] This simplifies to: \[ 5 = -[(1 - x_1)(1 + x_1)][(1 - x_2)(1 + x_2)][(1 - x_3)(1 + x_3)][(1 - x_4)(1 + x_4)][(1 - x_5)(1 + x_5)] \] ### Step 5: Recognize the Difference of Squares Each term \( (1 - x_i)(1 + x_i) \) can be rewritten as \( 1 - x_i^2 \): \[ 5 = -[(1 - x_1^2)(1 - x_2^2)(1 - x_3^2)(1 - x_4^2)(1 - x_5^2)] \] ### Step 6: Solve for the Desired Product Thus, we have: \[ -5 = (1 - x_1^2)(1 - x_2^2)(1 - x_3^2)(1 - x_4^2)(1 - x_5^2) \] Taking the negative sign into account, we find: \[ (x_1^2 - 1)(x_2^2 - 1)(x_3^2 - 1)(x_4^2 - 1)(x_5^2 - 1) = 5 \] ### Final Answer Therefore, the value of \( (x_1^2 - 1)(x_2^2 - 1)(x_3^2 - 1)(x_4^2 - 1)(x_5^2 - 1) \) is: \[ \boxed{5} \]

To solve the equation \( x^5 + x^3 + x^2 + 2 = 0 \) and find the value of \( (x_1^2 - 1)(x_2^2 - 1)(x_3^2 - 1)(x_4^2 - 1)(x_5^2 - 1) \), where \( x_1, x_2, x_3, x_4, x_5 \) are the roots of the equation, we can follow these steps: ### Step 1: Substitute \( x = 1 \) We start by substituting \( x = 1 \) into the original equation: \[ 1^5 + 1^3 + 1^2 + 2 = 1 + 1 + 1 + 2 = 5 \] ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.3|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.4|3 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.1|3 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xtooo) ((7x^(2)+1)/(5x^(2)-1))^((x^(5))/(1-x^(3))).

Let x_(1),x_(2), x_(3) be roots of equation x^3 + 3x + 5 = 0 . What is the value of the expression (x_(1) + 1/x_(1))(x_(2)+1/x_(2)) (x_(3)+1/x_(3)) ?

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

The equation (|x^2-4x|+3)/(x^2+|x-5|)=1 has

If (2)//(5)(5x)+2(x-1)=4(x+1)-2 , what is the value of x?

If x_(1)+ x_(2)=3, x_(3)+x_(4)=12 and x_(1), x_(2), x_(3), x_(4) are in increasing G.P then the equation having x_(1), x_(2) as roots is

Solve the equation x^4 +4x^3 +5x^2 +2x -2=0 given that -1 + sqrt(-1 ) is a root

The equation x ^(4) -2x ^(3)-3x^2 + 4x -1=0 has four distinct real roots x _(1), x _(2), x _(3), x_(4) such that x _(1) lt x _(2) lt x _(3)lt x _(4) and product of two roots is unity, then : x _(1)x _(2) +x_(1)x_(3) + x_(2) x _(4) +x_(3) x _(4)=

Evaluate: int((x^2+1)(x^2+4))/((x^2+3)(x^2-5))\ dx

Evaluate: int((x^2+1)(x^2+4))/((x^2+3)(x^2-5))\ dx