Home
Class 12
MATHS
Find the value of 2+1/(2+1/(2+1/(2+oo)))...

Find the value of `2+1/(2+1/(2+1/(2+oo)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \infty}}} \), we will first simplify the nested fractions step by step. ### Step 1: Understanding the Infinite Nesting The expression \( 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \infty}}} \) suggests that as we go deeper into the nesting, the innermost part approaches a limit. We can denote the entire expression as \( x \): \[ x = 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \infty}}} \] ### Step 2: Simplifying the Innermost Fraction We can denote the innermost part as \( y \): \[ y = 2 + \frac{1}{2 + \frac{1}{2 + \infty}} \] As \( \frac{1}{2 + \infty} \) approaches \( 0 \), we can simplify \( y \) to: \[ y = 2 + 0 = 2 \] ### Step 3: Substitute Back to the Next Level Now we substitute \( y \) back into the expression for \( x \): \[ x = 2 + \frac{1}{2 + \frac{1}{2}} \] ### Step 4: Simplifying Further Next, we simplify \( \frac{1}{2 + \frac{1}{2}} \): \[ 2 + \frac{1}{2} = 2 + 0.5 = 2.5 \] Thus, \[ \frac{1}{2 + \frac{1}{2}} = \frac{1}{2.5} = \frac{2}{5} \] ### Step 5: Final Calculation Now substitute \( \frac{2}{5} \) back into the expression for \( x \): \[ x = 2 + \frac{2}{5} \] To add these, convert \( 2 \) to a fraction: \[ 2 = \frac{10}{5} \] Thus, \[ x = \frac{10}{5} + \frac{2}{5} = \frac{12}{5} \] ### Final Result The value of the expression \( 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \infty}}} \) is: \[ \boxed{\frac{12}{5}} \]

To solve the expression \( 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \infty}}} \), we will first simplify the nested fractions step by step. ### Step 1: Understanding the Infinite Nesting The expression \( 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \infty}}} \) suggests that as we go deeper into the nesting, the innermost part approaches a limit. We can denote the entire expression as \( x \): \[ x = 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \infty}}} \] ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.8|11 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.9|12 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.6|4 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

If sqrt(2)=1.414 , then find the value of (1)/(2+sqrt(2))

If a^(2) - 3a -1 =0 , find the value of a^(2) +(1)/(a^(2))

If cosx/2dotcosx/(2^2)dotcosx/(2^3)oo=(sinx)/x , then find the value of 1/(2^2)sec^2x/2+1/(2^4)sec^2x/(2^2)+1/(2^6)sec^2x/(2^3)+oo

Find the value of (tan^(2)37(1)/(2)^(@)+1)/(tan^(2)37(1)/(2)^(@)-1) .

Find the value of 2\ sec^(-1)2+sin^(-1)(1/2) .

Find the value of 3sum_(n=1)^(oo) {1/(pi) sum_(k=1)^(oo) cot^(-1)(1+2sqrt(sum_(r=1)^(k)r^(3)))}^(n)

If 1/1^2+1/2^2+1/3^2+...oo=pi^2/6 then value of 1-1/2^2+1/3^2-1/4^2+...oo=

Find the values of 1/x for the following values fo x: (a) (2,5) " (b) "[-5,-1) " (c ) "(3,oo) (d) (-oo,-2] " (e ) "[-3,4]

Find the value of lim_(x->oo)(2-1/x+4/x^2)

Find the value of sum_(r=0)^(oo) tan^(-1) ((1)/(1 + r + r^(2)))