Home
Class 12
MATHS
Solve sqrt(5x^2-6x+8)+sqrt(5x^2-6x-7)=1....

Solve `sqrt(5x^2-6x+8)+sqrt(5x^2-6x-7)=1.`

Text Solution

Verified by Experts

The correct Answer is:
`x = 4, - 14//5`

`L = sqrt(5x^(2) - 6x + 8) and M= sqrt(5x^(2) - 6x - 7) `. Hence,
`L - M = 1 and L^(2) - M^(2) = 15`
`rArr L + M = 15`
Adding we get
`2L = 16`
or `L^(2) = 64`
`5x^(2) - 6x + 8 = 64`
or `5x^(2) - 6x - 56= 0`
or `(x - 4) (5x + 14) = 0`
or `x = 4, - 14//5`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.8|11 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.9|12 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.6|4 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

Solve sqrt(5)x^2+x+sqrt(5)=0 .

Solve sqrt(3x^2-7x-30)+sqrt(2x^2-7x-5)=x+5.

Solve sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5

Solve sqrt(x^2+4x-21)+sqrt(x^2-x-6)=sqrt(6x^2-5x-39.)

Solve: sqrt(5)x^(2) + x + sqrt(5) = 0

THe value of x which satisfy the equation (sqrt(5x^2-8x+3))-sqrt((5x^2-9x+4))=sqrt((2x^2-2x))-sqrt((2x^2-3x+1)) is

Solve sqrt(2x+1)+sqrt(3x+2)=sqrt(5x+3)

int_(-1)^(2) sqrt(5x+6)dx

Solve sqrt(x+5)+sqrt(x+21)=sqrt(6x+40.)

Solve sqrt(5-2 sin x)=6 sin x-1