Home
Class 12
MATHS
Find the rang of f(x)=(x^2+34 x-71)/(x...

Find the rang of `f(x)=(x^2+34 x-71)/(x^2+2x-7)` `f(x)=(x^2-x+1)/(x^2+x+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the given functions, we will analyze each function step by step. ### Part 1: Finding the Range of \( f(x) = \frac{x^2 + 34x - 71}{x^2 + 2x - 7} \) 1. **Set the function equal to \( y \)**: \[ y = \frac{x^2 + 34x - 71}{x^2 + 2x - 7} \] 2. **Cross-multiply**: \[ y(x^2 + 2x - 7) = x^2 + 34x - 71 \] 3. **Rearranging the equation**: \[ yx^2 + 2yx - 7y = x^2 + 34x - 71 \] \[ (y - 1)x^2 + (2y - 34)x + (7y - 71) = 0 \] 4. **For the quadratic equation to have real solutions, the discriminant must be non-negative**: \[ D = (2y - 34)^2 - 4(y - 1)(7y - 71) \geq 0 \] 5. **Expanding the discriminant**: \[ D = (2y - 34)^2 - 4[(y - 1)(7y - 71)] \] \[ = 4y^2 - 136y + 1156 - 4(7y^2 - 71y - 7y + 71) \] \[ = 4y^2 - 136y + 1156 - (28y^2 - 312y + 284) \] \[ = 4y^2 - 136y + 1156 - 28y^2 + 312y - 284 \] \[ = -24y^2 + 176y + 872 \geq 0 \] 6. **Dividing the entire inequality by -8** (and reversing the inequality): \[ 3y^2 - 22y - 109 \leq 0 \] 7. **Finding the roots using the quadratic formula**: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{22 \pm \sqrt{(-22)^2 - 4 \cdot 3 \cdot (-109)}}{2 \cdot 3} \] \[ = \frac{22 \pm \sqrt{484 + 1308}}{6} = \frac{22 \pm \sqrt{1792}}{6} \] \[ = \frac{22 \pm 42.426}{6} \] \[ y_1 = \frac{64.426}{6} \approx 10.738 \quad \text{and} \quad y_2 = \frac{-20.426}{6} \approx -3.404 \] 8. **Finding the range**: The quadratic \( 3y^2 - 22y - 109 \leq 0 \) is satisfied between the roots: \[ y \in \left[-3.404, 10.738\right] \] ### Part 2: Finding the Range of \( f(x) = \frac{x^2 - x + 1}{x^2 + x + 1} \) 1. **Set the function equal to \( y \)**: \[ y = \frac{x^2 - x + 1}{x^2 + x + 1} \] 2. **Cross-multiply**: \[ y(x^2 + x + 1) = x^2 - x + 1 \] 3. **Rearranging the equation**: \[ yx^2 + yx + y = x^2 - x + 1 \] \[ (y - 1)x^2 + (y + 1)x + (y - 1) = 0 \] 4. **For the quadratic equation to have real solutions, the discriminant must be non-negative**: \[ D = (y + 1)^2 - 4(y - 1)(y - 1) \geq 0 \] 5. **Expanding the discriminant**: \[ D = (y + 1)^2 - 4(y - 1)^2 \] \[ = y^2 + 2y + 1 - 4(y^2 - 2y + 1) \] \[ = y^2 + 2y + 1 - 4y^2 + 8y - 4 \] \[ = -3y^2 + 10y - 3 \geq 0 \] 6. **Dividing the entire inequality by -3** (and reversing the inequality): \[ y^2 - \frac{10}{3}y + 1 \leq 0 \] 7. **Finding the roots using the quadratic formula**: \[ y = \frac{\frac{10}{3} \pm \sqrt{(\frac{10}{3})^2 - 4 \cdot 1}}{2} \] \[ = \frac{\frac{10}{3} \pm \sqrt{\frac{100}{9} - 4}}{2} = \frac{\frac{10}{3} \pm \sqrt{\frac{100}{9} - \frac{36}{9}}}{2} \] \[ = \frac{\frac{10}{3} \pm \sqrt{\frac{64}{9}}}{2} = \frac{\frac{10}{3} \pm \frac{8}{3}}{2} \] \[ y_1 = \frac{18/3}{2} = 3 \quad \text{and} \quad y_2 = \frac{2/3}{2} = \frac{1}{3} \] 8. **Finding the range**: The quadratic \( y^2 - \frac{10}{3}y + 1 \leq 0 \) is satisfied between the roots: \[ y \in \left[\frac{1}{3}, 3\right] \] ### Final Results: - The range of the first function \( f(x) = \frac{x^2 + 34x - 71}{x^2 + 2x - 7} \) is \( \left[-3.404, 10.738\right] \). - The range of the second function \( f(x) = \frac{x^2 - x + 1}{x^2 + x + 1} \) is \( \left[\frac{1}{3}, 3\right] \).

To find the range of the given functions, we will analyze each function step by step. ### Part 1: Finding the Range of \( f(x) = \frac{x^2 + 34x - 71}{x^2 + 2x - 7} \) 1. **Set the function equal to \( y \)**: \[ y = \frac{x^2 + 34x - 71}{x^2 + 2x - 7} \] ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.9|12 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.10|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.7|9 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=(x^2+34 x-71)/(x^2+2x-7)

Find the range of f(x)=(x^2+34 x-71)/(x^2+2x-7)

Find the range of f(x)=(x^2+34 x-71)/(x^2+2x-7)

Find the range of f(x)=(x^2-x+1)/(x^2+x+1)

Find the range of f(x)=(x^2-x+1)/(x^2+x+1)

Find the range of f(x)=|x^(2)-3x+2|

Find the range of f(x)=(x^(2)+x+1)/(x^(2)+x-1)

Find the range of f(x)=(x^2+1)/(x^2+2)

Find the range of f(x)=x^(2)-2|x|+3

Find the range of f(x)=sin^2x-sinx+1.