Home
Class 12
MATHS
Find the range of f(x)sqrt(x-1)+sqrt(5-1...

Find the range of `f(x)sqrt(x-1)+sqrt(5-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sqrt{x - 1} + \sqrt{5 - x} \), we will follow these steps: ### Step 1: Define the function Let \( y = f(x) = \sqrt{x - 1} + \sqrt{5 - x} \). ### Step 2: Square both sides Squaring both sides gives: \[ y^2 = (\sqrt{x - 1} + \sqrt{5 - x})^2 \] Using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \), we have: \[ y^2 = (x - 1) + (5 - x) + 2\sqrt{(x - 1)(5 - x)} \] This simplifies to: \[ y^2 = 4 + 2\sqrt{(x - 1)(5 - x)} \] ### Step 3: Isolate the square root Rearranging gives: \[ y^2 - 4 = 2\sqrt{(x - 1)(5 - x)} \] Dividing both sides by 2: \[ \frac{y^2 - 4}{2} = \sqrt{(x - 1)(5 - x)} \] ### Step 4: Square both sides again Squaring both sides again results in: \[ \left(\frac{y^2 - 4}{2}\right)^2 = (x - 1)(5 - x) \] Expanding the left-hand side: \[ \frac{(y^2 - 4)^2}{4} = (x - 1)(5 - x) \] The right-hand side can be expanded as: \[ (x - 1)(5 - x) = 5x - x^2 - 5 + x = -x^2 + 6x - 5 \] ### Step 5: Rearranging the equation Rearranging gives: \[ -x^2 + 6x - 5 = \frac{(y^2 - 4)^2}{4} \] Multiplying through by 4 to eliminate the fraction: \[ -4x^2 + 24x - 20 = (y^2 - 4)^2 \] ### Step 6: Completing the square To complete the square for the quadratic in \( x \): \[ -4(x^2 - 6x + 5) = (y^2 - 4)^2 \] Completing the square inside the parentheses: \[ -4((x - 3)^2 - 4) = (y^2 - 4)^2 \] This simplifies to: \[ -4(x - 3)^2 + 16 = (y^2 - 4)^2 \] ### Step 7: Finding the minimum and maximum values For \( y \) to have real values, the right-hand side must be non-negative. Thus: \[ -4(x - 3)^2 + 16 \geq 0 \] This implies: \[ (x - 3)^2 \leq 4 \] So: \[ -2 \leq x - 3 \leq 2 \implies 1 \leq x \leq 5 \] ### Step 8: Evaluating the function at the endpoints - At \( x = 1 \): \[ f(1) = \sqrt{1 - 1} + \sqrt{5 - 1} = 0 + 2 = 2 \] - At \( x = 5 \): \[ f(5) = \sqrt{5 - 1} + \sqrt{5 - 5} = 2 + 0 = 2 \] - At \( x = 3 \): \[ f(3) = \sqrt{3 - 1} + \sqrt{5 - 3} = \sqrt{2} + \sqrt{2} = 2\sqrt{2} \] ### Conclusion Thus, the range of \( f(x) \) is: \[ [2, 2\sqrt{2}] \]

To find the range of the function \( f(x) = \sqrt{x - 1} + \sqrt{5 - x} \), we will follow these steps: ### Step 1: Define the function Let \( y = f(x) = \sqrt{x - 1} + \sqrt{5 - x} \). ### Step 2: Square both sides Squaring both sides gives: \[ ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.9|12 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.10|5 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.7|9 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=sqrt(x-1)+sqrt(5-x)

Find the range of f(x) = sqrt(x-1)+sqrt(5-x)

Find the range of f(x)=sqrt(cos^(-1)sqrt((1-x^2))-sin^(-1)x)

Find the range of f(x)=sqrt(1-sqrt(x^2-6x+9))

Find the range of f(x)=sqrt(4-sqrt(1+tan^2x)) .

The range of f(x)=sqrt(|x|-x) is:

Find the domain of f(x) = sqrt(x-1) .

Find the range of f(x)=cos^(-1)((sqrt(1+2x^2))/(1+x^2))

Find the range of f(x)=tan^(-1)sqrt((x^2-2x+2))

Find the range of f(x)=tan^(-1)sqrt((x^2-2x+2))