Home
Class 12
MATHS
If alpha, beta are the roots of x^(2) - ...

If `alpha, beta` are the roots of `x^(2) - px + q = 0` and `alpha', beta'` are the roots of `x^(2) - p' x + q' = 0`, then the value of `(alpha - alpha')^(2) + (beta + alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2)` is

A

`2{p^(2) - 2q + p'^(2) - 2q' - pp'}`

B

`2{p^(2) - 2q + p'^(2) - 2q' - qq'}`

C

`2{p^(2) - 2q - p'^(2) - 2q' + pp'}`

D

`2{p^(2) - 2q - p'^(2) - 2q' - qq'}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: 1. **Identify the given roots and their relationships**: - The roots \( \alpha \) and \( \beta \) of the equation \( x^2 - px + q = 0 \) give us: \[ \alpha + \beta = p \quad \text{(1)} \] \[ \alpha \beta = q \quad \text{(2)} \] - The roots \( \alpha' \) and \( \beta' \) of the equation \( x^2 - p'x + q' = 0 \) give us: \[ \alpha' + \beta' = p' \quad \text{(3)} \] \[ \alpha' \beta' = q' \quad \text{(4)} \] 2. **Set up the expression to evaluate**: We need to find the value of: \[ (\alpha - \alpha')^2 + (\beta - \alpha')^2 + (\alpha - \beta')^2 + (\beta - \beta')^2 \] 3. **Expand each term**: - Expanding \( (\alpha - \alpha')^2 \): \[ (\alpha - \alpha')^2 = \alpha^2 - 2\alpha\alpha' + \alpha'^2 \] - Expanding \( (\beta - \alpha')^2 \): \[ (\beta - \alpha')^2 = \beta^2 - 2\beta\alpha' + \alpha'^2 \] - Expanding \( (\alpha - \beta')^2 \): \[ (\alpha - \beta')^2 = \alpha^2 - 2\alpha\beta' + \beta'^2 \] - Expanding \( (\beta - \beta')^2 \): \[ (\beta - \beta')^2 = \beta^2 - 2\beta\beta' + \beta'^2 \] 4. **Combine all expanded terms**: Combining all these expansions, we have: \[ (\alpha - \alpha')^2 + (\beta - \alpha')^2 + (\alpha - \beta')^2 + (\beta - \beta')^2 = 2\alpha^2 + 2\beta^2 + 2\alpha'^2 + 2\beta'^2 - 2\alpha\alpha' - 2\beta\alpha' - 2\alpha\beta' - 2\beta\beta' \] 5. **Factor out the common terms**: This can be simplified to: \[ 2(\alpha^2 + \beta^2 + \alpha'^2 + \beta'^2) - 2(\alpha + \beta)(\alpha' + \beta') = 2(\alpha^2 + \beta^2 + \alpha'^2 + \beta'^2 - (\alpha + \beta)(\alpha' + \beta')) \] 6. **Use the relationships from steps 1-4**: We know: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = p^2 - 2q \quad \text{(from (1) and (2))} \] \[ \alpha'^2 + \beta'^2 = (\alpha' + \beta')^2 - 2\alpha'\beta' = (p')^2 - 2q' \quad \text{(from (3) and (4))} \] 7. **Substitute back into the expression**: Substituting these values back, we get: \[ 2\left((p^2 - 2q) + (p'^2 - 2q')\right) - 2(p)(p') \] Simplifying gives: \[ 2p^2 - 4q + 2p'^2 - 4q' - 2pp' \] 8. **Final expression**: Thus, the final value is: \[ 2p^2 - 2q - 2q' + 2p'^2 - 2pp' \] 9. **Conclusion**: The final result is: \[ 2(p^2 - 2q + p'^2 - 2q' - pp') \]

To solve the problem, we will follow these steps: 1. **Identify the given roots and their relationships**: - The roots \( \alpha \) and \( \beta \) of the equation \( x^2 - px + q = 0 \) give us: \[ \alpha + \beta = p \quad \text{(1)} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|38 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Linked Comprechension Type|37 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 2.13|9 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alpha , beta are the roots of x^2-p(x+1)+c=0 then (1+alpha )( 1+ beta )=

If alpha and beta are the roots of x^2 - p (x+1) - c = 0 , then the value of (alpha^2 + 2alpha+1)/(alpha^2 +2 alpha + c) + (beta^2 + 2beta + 1)/(beta^2 + 2beta + c)

If alpha and beta are the roots of x^2 - p (x+1) - c = 0 , then the value of (alpha^2 + 2alpha+1)/(alpha^2 +2 alpha + c) + (beta^2 + 2beta + 1)/(beta^2 + 2beta + c)

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha, beta are the roots of x^(2)+x+1=0 , then alpha^(-2)+beta^(-2) is

If alpha and beta be the roots of equation x^(2) + 3x + 1 = 0 then the value of ((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2) is equal to

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

If alpha and beta (alpha gt beta) are the roots of x^(2) + kx - 1 =0 , then find the value of tan^(-1) alpha - tan^(-1) beta

If alpha,beta be the roots of x^(2)-a(x-1)+b=0 , then the value of (1)/(alpha^(2)-a alpha)+(1)/(beta^(2)-a beta)+(2)/(a+b) is

CENGAGE ENGLISH-THEORY OF EQUATIONS-Single Correct Answer Type : Exercise
  1. If b(1)b(2) = 2(c(1) + c(2)), then at least one of the equations x^(2)...

    Text Solution

    |

  2. Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), ...

    Text Solution

    |

  3. If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' a...

    Text Solution

    |

  4. If alpha,beta are the roots of the equation a x^2+b x+c=0, then the va...

    Text Solution

    |

  5. The quadratic x^2+a x=b+1=0 has roots which are positive integers, the...

    Text Solution

    |

  6. If alpha,beta re the roots of a x^2+c=b x , then the equation (a+c y)^...

    Text Solution

    |

  7. If alphaa n dbeta are roots of the equation a x^2+b x+c=0, then the ro...

    Text Solution

    |

  8. If the roots of the equation a x^2-b x+c=0a r ealpha,beta, then the ro...

    Text Solution

    |

  9. If a(p+q)^2+2b p q+c=0 and a(p+r)^2+2b p r+c=0 (a!=0) , then which one...

    Text Solution

    |

  10. If alpha,beta are the nonzero roots of a x^2+b x+c=0a n dalpha^2,beta^...

    Text Solution

    |

  11. If the roots of the equation a x^2+b x+c=0 are of the form (k+1)//ka n...

    Text Solution

    |

  12. If alpha, beta are the roots of ax^(2) + bx + c = 0 and alpha + h, bet...

    Text Solution

    |

  13. If one root of x^(2)-x-k=0 is square of the other, then find the value...

    Text Solution

    |

  14. If alpha and beta be the roots of the equation x^(2) + px - 1//(2p^(2)...

    Text Solution

    |

  15. If alpha,beta are the roots of x^2+p x+q=0 and gamma,delta are the roo...

    Text Solution

    |

  16. The value of m for which one of the roots of x^(2) - 3x + 2m = 0 is do...

    Text Solution

    |

  17. If the equation x^2-3p x+2q=0a n dx^2-3a x+2b=0 have a common roots an...

    Text Solution

    |

  18. If alpha,beta are the roots of the equation x^2-2x+3=0 obtain the equa...

    Text Solution

    |

  19. A quadratic equation with integral coefficients has two different prim...

    Text Solution

    |

  20. One of the roots of ax^(2) + bx + c = 0 is greater than 2 and the othe...

    Text Solution

    |