Home
Class 12
MATHS
the roots of the equation (a+sqrt(b))^(x...

the roots of the equation `(a+sqrt(b))^(x^2-15)+(a-sqrt(b))^(x^2-15)=2a` where `a^2-b=1` are

A

`pm 4`

B

`pm3`

C

`pm sqrt(14)`

D

`pm sqrt (5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((a + \sqrt{b})^{x^2 - 15} + (a - \sqrt{b})^{x^2 - 15} = 2a\) given that \(a^2 - b = 1\), we can follow these steps: ### Step 1: Substitute \(a^2 - b = 1\) We know that \(a^2 - b = 1\). This can be rewritten as: \[ b = a^2 - 1 \] ### Step 2: Rewrite the equation Using the identity \(a^2 - b = (a + \sqrt{b})(a - \sqrt{b})\), we can express \(a + \sqrt{b}\) in terms of \(a - \sqrt{b}\): \[ a + \sqrt{b} = \frac{1}{a - \sqrt{b}} \] Now, substitute this into the original equation: \[ \left(\frac{1}{a - \sqrt{b}}\right)^{x^2 - 15} + (a - \sqrt{b})^{x^2 - 15} = 2a \] ### Step 3: Let \(y = (a - \sqrt{b})^{x^2 - 15}\) Let \(y = (a - \sqrt{b})^{x^2 - 15}\). Then, the equation becomes: \[ \frac{1}{y} + y = 2a \] ### Step 4: Multiply through by \(y\) Multiply the entire equation by \(y\) to eliminate the fraction: \[ 1 + y^2 = 2ay \] ### Step 5: Rearrange into a quadratic equation Rearranging gives us: \[ y^2 - 2ay + 1 = 0 \] ### Step 6: Use the quadratic formula Using the quadratic formula \(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ y = \frac{2a \pm \sqrt{(2a)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] \[ y = \frac{2a \pm \sqrt{4a^2 - 4}}{2} \] \[ y = a \pm \sqrt{a^2 - 1} \] ### Step 7: Substitute back for \(y\) Recall that \(y = (a - \sqrt{b})^{x^2 - 15}\). Thus, we have: \[ (a - \sqrt{b})^{x^2 - 15} = a \pm \sqrt{a^2 - 1} \] ### Step 8: Solve for \(x^2 - 15\) Taking logarithms on both sides, we can solve for \(x^2 - 15\): 1. For \(y = a + \sqrt{a^2 - 1}\): \[ x^2 - 15 = 1 \implies x^2 = 16 \implies x = \pm 4 \] 2. For \(y = a - \sqrt{a^2 - 1}\): \[ x^2 - 15 = -1 \implies x^2 = 14 \implies x = \pm \sqrt{14} \] ### Final Roots Thus, the roots of the equation are: \[ x = \pm 4 \quad \text{and} \quad x = \pm \sqrt{14} \]

To solve the equation \((a + \sqrt{b})^{x^2 - 15} + (a - \sqrt{b})^{x^2 - 15} = 2a\) given that \(a^2 - b = 1\), we can follow these steps: ### Step 1: Substitute \(a^2 - b = 1\) We know that \(a^2 - b = 1\). This can be rewritten as: \[ b = a^2 - 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Linked Comprechension Type|37 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|6 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type : Exercise|89 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

The roots of the equation 2(a ^2 +b^2)x^2+2(a+b)x+1=0 are

The harmonic mean of the roots of the equation (5+sqrt(2))x^2-(4+sqrt(5))x+8+2sqrt(5)=0 is 2 b. 4 c. 6 d. 8

The harmonic mean of the roots of the equation (5+sqrt(2))x^2-(4+sqrt(5))x+8+2sqrt(5)=0 is a. 2 b. 4 c. 6 d. 8

The sum of values of x satisfying the equation (31+8sqrt(15))^(x^2-3)+1=(32+8sqrt(15))^(x^2-3) is (a) 3 (b) 0 (c) 2 (d) none of these

Number of roots of the equation 2sqrt(2x+1)=2x-1 is 0 (b) 1 (c) 2 (d) 3

Number of roots of the equation 2sqrt(2x+1)=2x-1 is 0 (b) 1 (c) 2 (d) 3

If the value of x satisfying the equation sin^(-1)sqrt(1-x^2)=tan^(-1)sqrt(2/x-1) is a/b (where a&b are coprime), then the value of a^2+b^2 is a. 7 b. 5 c. 3 d. 1

If a lt c lt b then the roots of the equation (a−b)x^2 +2(a+b−2c)x+1=0 are

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

The roots of the quadratic equation (a + b-2c)x^2+ (2a-b-c) x + (a-2b + c) = 0 are

CENGAGE ENGLISH-THEORY OF EQUATIONS-Multiple Correct Answer Type
  1. If one root of the quadratic equation px^2 +qx + r = 0 (p != 0) is a s...

    Text Solution

    |

  2. If a , b ,c real in G.P., then the roots of the equation a x^2+b x+c=0...

    Text Solution

    |

  3. the roots of the equation (a+sqrt(b))^(x^2-15)+(a-sqrt(b))^(x^2-15)=2a...

    Text Solution

    |

  4. If the equations x^2+p x+q=0 and x^2+p^(prime)x+q^(prime)=0 have a com...

    Text Solution

    |

  5. If the quadratic equation a x^2+b x+c=0(a >0) has sec^2thetaa n dcos e...

    Text Solution

    |

  6. Given that alpha,gamma are roots of the equation A x^2-4x+1=0,a n dbet...

    Text Solution

    |

  7. If cos^4theta+alpha are the roots of the equation x^2+2b x+b=0a n dcos...

    Text Solution

    |

  8. If alpha,beta are the roots of the equation ax^2 + bx+c=0 then the roo...

    Text Solution

    |

  9. If every pair of equations x^2+ax+bc=0, x^2+bx+ca=0 and x^2+cx+ab=0 ha...

    Text Solution

    |

  10. If the equation 4x^2-x-1=0 and 3x^2+(lambda+mu)x+lambda-mu=0 have a r...

    Text Solution

    |

  11. If x^3+3x^2-9x+c is of the form (x-alpha)^2(x-beta) then c is equal to

    Text Solution

    |

  12. If the equation whose roots are the squares of the roots of the cubic ...

    Text Solution

    |

  13. If f(x) is a polynomial of degree 4 with rational coefficients a...

    Text Solution

    |

  14. (x^3+1/x^3)+(x^2+1/x^2)-6(x+1/x)-7=0

    Text Solution

    |

  15. 2x^2+6xy+5y^2=1, then

    Text Solution

    |

  16. If f(x) = ax^(2) + bx + c , where a ne 0, b ,c in R , then which ...

    Text Solution

    |

  17. If (x^(2) + 5)/(2) = x - 2 cos (m + n) has at least one real root, t...

    Text Solution

    |

  18. Let three quadratic equations ax^(2) - 2bx + c = 0, bx^(2) - 2 cx + a...

    Text Solution

    |

  19. For the quadratic equation x^2+2(a+1)x+9a-5=0, which of the following ...

    Text Solution

    |

  20. If a ,b ,c in Ra n da b c<0 , then equation b c x^2+2b+c-a)x+a=0h a s...

    Text Solution

    |