Home
Class 12
MATHS
(x^3+1/x^3)+(x^2+1/x^2)-6(x+1/x)-7=0...

`(x^3+1/x^3)+(x^2+1/x^2)-6(x+1/x)-7=0`

A

`(3 + sqrt(5))/(2)`

B

`(-3 - sqrt(5))/(2)`

C

`(3 - sqrt(5))/(2)`

D

`(-3 + sqrt(5))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ (x^3 + \frac{1}{x^3}) + (x^2 + \frac{1}{x^2}) - 6(x + \frac{1}{x}) - 7 = 0, \] we will use the substitution \( t = x + \frac{1}{x} \). ### Step 1: Express \( x^2 + \frac{1}{x^2} \) and \( x^3 + \frac{1}{x^3} \) in terms of \( t \) Using the identity for squares: \[ x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2 = t^2 - 2. \] Using the identity for cubes: \[ x^3 + \frac{1}{x^3} = (x + \frac{1}{x})^3 - 3(x + \frac{1}{x}) = t^3 - 3t. \] ### Step 2: Substitute these expressions into the original equation Substituting \( x^2 + \frac{1}{x^2} \) and \( x^3 + \frac{1}{x^3} \) into the equation gives: \[ (t^3 - 3t) + (t^2 - 2) - 6t - 7 = 0. \] ### Step 3: Simplify the equation Combining like terms: \[ t^3 + t^2 - 9t - 9 = 0. \] ### Step 4: Factor the cubic equation We can use the Rational Root Theorem or trial and error to find a root. Testing \( t = -1 \): \[ (-1)^3 + (-1)^2 - 9(-1) - 9 = -1 + 1 + 9 - 9 = 0. \] Thus, \( t + 1 \) is a factor. We can divide the cubic polynomial by \( t + 1 \): Using synthetic division or polynomial long division, we find: \[ t^3 + t^2 - 9t - 9 = (t + 1)(t^2 - 9). \] ### Step 5: Factor further The quadratic \( t^2 - 9 \) can be factored as: \[ (t - 3)(t + 3). \] Thus, we have: \[ (t + 1)(t - 3)(t + 3) = 0. \] ### Step 6: Solve for \( t \) Setting each factor to zero gives: 1. \( t + 1 = 0 \) → \( t = -1 \) 2. \( t - 3 = 0 \) → \( t = 3 \) 3. \( t + 3 = 0 \) → \( t = -3 \) ### Step 7: Solve for \( x \) Recall \( t = x + \frac{1}{x} \). 1. For \( t = -1 \): \[ x + \frac{1}{x} = -1 \implies x^2 + x + 1 = 0. \] The discriminant is negative, so no real roots. 2. For \( t = 3 \): \[ x + \frac{1}{x} = 3 \implies x^2 - 3x + 1 = 0. \] Using the quadratic formula: \[ x = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{3 \pm \sqrt{5}}{2}. \] 3. For \( t = -3 \): \[ x + \frac{1}{x} = -3 \implies x^2 + 3x + 1 = 0. \] Again using the quadratic formula: \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-3 \pm \sqrt{5}}{2}. \] ### Final Solutions The solutions for \( x \) are: 1. \( x = \frac{3 + \sqrt{5}}{2} \) 2. \( x = \frac{3 - \sqrt{5}}{2} \) 3. \( x = \frac{-3 + \sqrt{5}}{2} \) 4. \( x = \frac{-3 - \sqrt{5}}{2} \)

To solve the equation \[ (x^3 + \frac{1}{x^3}) + (x^2 + \frac{1}{x^2}) - 6(x + \frac{1}{x}) - 7 = 0, \] we will use the substitution \( t = x + \frac{1}{x} \). ...
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Linked Comprechension Type|37 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|6 Videos
  • THEORY OF EQUATIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type : Exercise|89 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise ARCHIVES (NUMERICAL VALUE TYPE)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE ENGLISH|Exercise All Questions|294 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^(-7/6)-x^(5/6))/(x^(1/3)(x^2+x+1)^(1/2)-x^(1/2)(x^2+x+1)^(1/3))dx

lim_(x rarr 0)((5x^2+1)/(3x^2+1))^(1//x^2)

In which of the following functions is Rolles theorem applicable? (a)f(x)={x ,0lt=x<1 0,x=1on[0,1] (b)f(x)={(sinx)/x ,-pilt=x<0 0,x=0on[-pi,0) (c)f(x)=(x^2-x-6)/(x-1)on[-2,3] (d)f(x)={(x^3-2x^2-5x+6)/(x-1)ifx!=1,-6ifx=1on[-2,3]

Simplify: 4x^(3)-2x^(2)+5x-1+8x+x^(2)-6x^(3)+7-6x+3-3x^(2)-x^(3)

If l=int((2x-3)^(1/2))/((2x-3)^(1/3)+1)dx=3[(1)/(7)(2x-3)^(7/6)-(1)/(5)(2x-3)^(5/6)+(1)/(3)(2x-3)^(1/2)-(2x-3)^(1/6)+g(x)]+c then g(x) is equal to

Solve (2x-3)/(x-1)+1=(6x-x^2-6)/(x-1)dot

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

Which of the following are quadratic equations? (i) (x+1/x)^2=3(x+1/x)+4 (ii) (2x+1)(3x+2)=6(x-1)(x-2) (iii) x+1/x=x^2,\ \ x!=0

Evaluate int ((8x+13)/sqrt(4x+7)) dx (A) 1/3 (4x+7)^(3/2) - 1/2 (4x+7)^(1/2) + c (B) 1/6 (4x+7)^(5/2) - 2/3 (4x+7)^(3/2) + c (C) 1/3 (4x+7)^(5/2) - 1/2 (4x+7)^(3/2) + c (D) (4x+7)^(3/2) - 1/2 (4x+7)^(1/2) + c

CENGAGE ENGLISH-THEORY OF EQUATIONS-Multiple Correct Answer Type
  1. If the equation whose roots are the squares of the roots of the cubic ...

    Text Solution

    |

  2. If f(x) is a polynomial of degree 4 with rational coefficients a...

    Text Solution

    |

  3. (x^3+1/x^3)+(x^2+1/x^2)-6(x+1/x)-7=0

    Text Solution

    |

  4. 2x^2+6xy+5y^2=1, then

    Text Solution

    |

  5. If f(x) = ax^(2) + bx + c , where a ne 0, b ,c in R , then which ...

    Text Solution

    |

  6. If (x^(2) + 5)/(2) = x - 2 cos (m + n) has at least one real root, t...

    Text Solution

    |

  7. Let three quadratic equations ax^(2) - 2bx + c = 0, bx^(2) - 2 cx + a...

    Text Solution

    |

  8. For the quadratic equation x^2+2(a+1)x+9a-5=0, which of the following ...

    Text Solution

    |

  9. If a ,b ,c in Ra n da b c<0 , then equation b c x^2+2b+c-a)x+a=0h a s...

    Text Solution

    |

  10. The graph of the quadratic trinomial u=a x^2+b x+c has its vertex at (...

    Text Solution

    |

  11. Let a ,b ,c in Q^+ satisfying a > b > cdot Which of the following sta...

    Text Solution

    |

  12. Let f(X) = ax^(2) + bx + c . Consider the following diagram .

    Text Solution

    |

  13. Graph of y = ax^(2) + bx + c is as shown in the figure . If PQ= 9, ...

    Text Solution

    |

  14. ax^2 + bx + c = 0(a > 0), has two roots alpha and beta such alpha < -2...

    Text Solution

    |

  15. If the equation ax^(2) + bx + c = 0, a,b, c, in R have non -real ro...

    Text Solution

    |

  16. If cos x - y^(2) - sqrt(y - x ^(2) - 1 )ge 0 , then

    Text Solution

    |

  17. If ax^(2)+(b-c)x+a-b-c=0 has unequal real roots for all c epsilonR, th...

    Text Solution

    |

  18. If (x^2+a x+3)/(x^2+x+a) takes all real values for possible real value...

    Text Solution

    |

  19. If the range of function f(x) = (x + 1)/(k+x^(2)) contains the inter...

    Text Solution

    |

  20. Consider equation (x - sin alpha) (x-cos alpha) - 2 = 0 . Which of the...

    Text Solution

    |