Home
Class 12
MATHS
(1)/(a + omega) + (1)/(b+omega) +(1)/(c ...

`(1)/(a + omega) + (1)/(b+omega) +(1)/(c + omega) + (1)/(d + omega) =(1)/(omega)` where, a,b,c,d, `in` R and `omega` is a complex cube root of unity then find the value of `sum (1)/(a^(2)-a+1)`

Text Solution

AI Generated Solution

To solve the equation \[ \frac{1}{a + \omega} + \frac{1}{b + \omega} + \frac{1}{c + \omega} + \frac{1}{d + \omega} = \frac{1}{\omega} \] where \( a, b, c, d \in \mathbb{R} \) and \( \omega \) is a complex cube root of unity, we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise SLOVED EXAMPLES|15 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity, then 1+omega = …..

If omega is a cube root of unity, then 1+ omega^(2)= …..

Knowledge Check

  • If 1 , omega, omega^(2) are cube roots of unity then the value of (5+2omega +5omega^(2))^(3) is

    A
    27
    B
    `-9`
    C
    `-27`
    D
    `-81`
  • If 1, omega,omega^(2) are cube roots of unity then the value of (2+2omega-3omega^(2))^(3) is

    A
    125
    B
    `-125`
    C
    27
    D
    `-27`
  • If 1 , omega, omega^(2) are cube roots of unity then the value of (3 + 5omega+3omega^(2))^(3) is

    A
    6
    B
    8
    C
    12
    D
    16
  • Similar Questions

    Explore conceptually related problems

    If omega is the complex cube root of unity, then the value of omega+omega ^(1/2+3/8+9/32+27/128+………..) ,

    If A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) where omega is a complex cube root of unity then adj -A equals

    If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

    If omega is a cube root of unity and (1+omega)^7=A+Bomega then find the values of A and B

    Value of sum_(k = 1)^(100)(i^(k!) + omega^(k!)) , where i = sqrt(-1) and omega is complex cube root of unity , is :