Home
Class 12
MATHS
Z1!=Z2 are two points in an Argand plane...

`Z_1!=Z_2` are two points in an Argand plane. If `a|Z_1|=b|Z_2|,` then prove that `(a Z_1-b Z_2)/(a Z_1+b Z_2)` is purely imaginary.

Text Solution

AI Generated Solution

To prove that \(\frac{a Z_1 - b Z_2}{a Z_1 + b Z_2}\) is purely imaginary given that \(a |Z_1| = b |Z_2|\) and \(Z_1 \neq Z_2\), we can follow these steps: ### Step 1: Express \(Z_1\) and \(Z_2\) in polar form Let: \[ Z_1 = r_1 e^{i\theta_1} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise SLOVED EXAMPLES|15 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Prove that |z_1+z_2|^2=|z_1|^2, ifz_1//z_2 is purely imaginary.

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

z_1a n dz_2 are two distinct points in an Argand plane. If a|z_1|=b|z_2|(w h e r ea ,b in R), then the point (a z_1//b z_2)+(b z_2//a z_1) is a point on the line segment [-2, 2] of the real axis line segment [-2, 2] of the imaginary axis unit circle |z|=1 the line with a rgz=tan^(-1)2

Given that |z_1+z_2|^2=|z_1|^2+|z_2|^2 , prove that z_1/z_2 is purely imaginary.

Prove that |z_1+z_2|^2=|z_1|^2+|z_2|^2, ifz_1//z_2 is purely imaginary.

If |z/| barz |- barz |=1+|z|, then prove that z is a purely imaginary number.

If z_1 and z_2 are two complex numbers such that |z_1|lt1lt|z_2| then prove that |(1-z_1barz_2)/(z_1-z_2)|lt1

Let z_1, z_2 be two complex numbers with |z_1| = |z_2| . Prove that ((z_1 + z_2)^2)/(z_1 z_2) is real.

If the triangle fromed by complex numbers z_(1), z_(2) and z_(3) is equilateral then prove that (z_(2) + z_(3) -2z_(1))/(z_(3) - z_(2)) is purely imaginary number

Let Z_1 and Z_2 are two non-zero complex number such that |Z_1+Z_2|=|Z_1|=|Z_2| , then Z_1/Z_2 may be :

CENGAGE ENGLISH-COMPLEX NUMBERS-ILLUSTRATION
  1. Prove that traingle by complex numbers z(1),z(2) and z(3) is equilate...

    Text Solution

    |

  2. Show that e^(2m itheta)((icottheta+1)/(i cottheta-1))^m=1.

    Text Solution

    |

  3. Z1!=Z2 are two points in an Argand plane. If a|Z1|=b|Z2|, then prove t...

    Text Solution

    |

  4. Find the real part of (1-i)^(-i)dot

    Text Solution

    |

  5. If (sqrt(8)+i)^(50)=3^(49)(a+i b) , then find the value of a^2+b^2dot

    Text Solution

    |

  6. Show that (x^2+y^2)^4=(x^4-6x^2y^2+y^4)^2+(4x^3y-4x y^3)^2dot

    Text Solution

    |

  7. If a rg(z1)=170^0a n d arg(z2)70^0 , then find the principal argument ...

    Text Solution

    |

  8. Find the value of expression (cos(pi/2)+isin(pi/2))(cos(pi/(2^2))+isin...

    Text Solution

    |

  9. Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))...

    Text Solution

    |

  10. If z=((sqrt(3)+i)^(17))/((1-i)^(50)) , then find a m p(z)dot

    Text Solution

    |

  11. If z=x+i y and w=(1-i z)/(z-i) , show that |w|=1 z is purely real.

    Text Solution

    |

  12. It is given the complex numbers z(1) and z(2), |z(1)| =2 and |z(2)| ...

    Text Solution

    |

  13. Solve the equation z^(3) = barz (z ne 0)

    Text Solution

    |

  14. If 2z1//3z2 is a purely imaginary number, then find the value of "|"(z...

    Text Solution

    |

  15. Find the complex number satisfying the system of equations z^3+ omega^...

    Text Solution

    |

  16. Express the following in a + ib form: (i) ((cos theta+ isin theta...

    Text Solution

    |

  17. Let z = ((sqrt(3))/(2) + (i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5). If ...

    Text Solution

    |

  18. Prove that the roots of the equation x^4-2x^2+4=0 forms a rectangle.

    Text Solution

    |

  19. If z + 1/z = 2costheta, prove that |(z^(2n)-1)//(z^(2n)+1)|=|tannthet...

    Text Solution

    |

  20. If z=x+i y is a complex number with x ,y in Qa n d|z|=1, then show th...

    Text Solution

    |