Home
Class 12
MATHS
Given that |z1+z2|^2=|z1|^2+|z2|^2, prov...

Given that `|z_1+z_2|^2=|z_1|^2+|z_2|^2`, prove that `z_1/z_2` is purely imaginary.

Text Solution

AI Generated Solution

To prove that \( \frac{z_1}{z_2} \) is purely imaginary given that \( |z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 \), we can follow these steps: ### Step 1: Start with the given equation We are given: \[ |z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise SLOVED EXAMPLES|15 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Prove that |z_1+z_2|^2=|z_1|^2+|z_2|^2, ifz_1//z_2 is purely imaginary.

(v) |(z_1)/(z_2)|=|z_1| /|z_2|

Prove that |z_1+z_2|^2=|z_1|^2, ifz_1//z_2 is purely imaginary.

If z_1, z_2 are two complex numbers (z_1!=z_2) satisfying |z_1^2-z_2^2|=| z_ 1^2+ z _2 ^2-2( z _1)( z _2)| , then a. (z_1)/(z_2) is purely imaginary b. (z_1)/(z_2) is purely real c. |a r g z_1-a rgz_2|=pi d. |a r g z_1-a rgz_2|=pi/2

If |z_1 + z_2| = |z_1| + |z_2| is possible if :

Z_1!=Z_2 are two points in an Argand plane. If a|Z_1|=b|Z_2|, then prove that (a Z_1-b Z_2)/(a Z_1+b Z_2) is purely imaginary.

Z_1!=Z_2 are two points in an Argand plane. If a|Z_1|=b|Z_2|, then prove that (a Z_1-b Z_2)/(a Z_1+b Z_2) is purely imaginary.

If |z/| barz |- barz |=1+|z|, then prove that z is a purely imaginary number.

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

if |z_1+z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2) if |z_1-z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2)=pi

CENGAGE ENGLISH-COMPLEX NUMBERS-ILLUSTRATION
  1. If |z1|=1,|z2|=2,|z3|=3,a n d|9z1z2+4z1z3+z2z3|=12 , then find the val...

    Text Solution

    |

  2. If alpha\ a n d\ beta are different complex numbers with |beta|=1,\ fi...

    Text Solution

    |

  3. Given that |z1+z2|^2=|z1|^2+|z2|^2, prove that z1/z2 is purely imagina...

    Text Solution

    |

  4. Let |(z(1) - 2z(2))//(2-z(1)z(2))|= 1 and |z(2)| ne 1, where z(1) and...

    Text Solution

    |

  5. If z1a n dz2 are two complex numbers and c >0 , then prove that |z1+z2...

    Text Solution

    |

  6. If z1, z2, z3, z4 are the affixes of four point in the Argand plane, z...

    Text Solution

    |

  7. if |z1+z2|=|z1|+|z2|, then prove that a r g(z1)=a r g(z2) if |z1-z2|=...

    Text Solution

    |

  8. Show that the area of the triangle on the Argand diagram formed by the...

    Text Solution

    |

  9. Find the minimum value of |z-1| if ||z-3|-|z+1||=2.

    Text Solution

    |

  10. Find the greatest and the least value of |z1+z2| ifz1=24+7ia n d|z2|=6...

    Text Solution

    |

  11. If z is a complex number, then find the minimum value of |z|+|z-1|+|2z...

    Text Solution

    |

  12. If |z1-1|lt=,|z2-2|lt=2,|z(33)|lt=3, then find the greatest value of |...

    Text Solution

    |

  13. Prove that following inequalities: (i) |(z)/(|z|) -1| le |arg z| (...

    Text Solution

    |

  14. Identify the locus of z if z = a +(r^2)/(z-a),> 0.

    Text Solution

    |

  15. If z is any complex number such that |3z-2|+|3z+2|=4 , then identify t...

    Text Solution

    |

  16. If |z|=1 and let omega=((1-z)^2)/(1-z^2) , then prove that the locus o...

    Text Solution

    |

  17. Let z be a complex number having the argument theta ,0 < theta < pi/2,...

    Text Solution

    |

  18. How many solutions the system of equations ||z + 4 |-|z-3i|| =5 and...

    Text Solution

    |

  19. Prove that |Z-Z1|^2+|Z-Z2|^2=a will represent a real circle [with cent...

    Text Solution

    |

  20. If |z-2-3i|^(2) + |z- 5 - 7i|^(2)= lambda respresents the equation ...

    Text Solution

    |