Home
Class 12
MATHS
If |z|<=1,|w|<=1, then show that |z- w|...

If ` |z|<=1,|w|<=1`, then show that `|z- w|^2<=(|z|-|w|)^2+(argz-argw)^2`

Text Solution

Verified by Experts

Let `z =|z|e^(ialpha) and w =|w|e^(ibeta)`
Now, `|z -w|^(2) =|z|^(2) +|w|^(2) -2Re (zbarw)`
`= (|z| -|w|)^(2) -2|z||w| -2Re(|z||w|e^(i(alpha -beta)))`
`=(|z| -|w|)^(2) +|z||w|(2-2cos (alpha- beta))`
` lt (|z| - |w|)^(2) + 4sin^(2) ((alpha-beta)/(2)) " "(because |z| le 1,|w| le1)`
`le (|z| -|w|)^(2) + 4((alpha - beta)/(2))^(2) " " (because sin theta lt theta "for" theta in (0,pi//2))`
`= (|z| -|w|)^(2) + 4(alpha - beta)^(2)`
`= (|z| -|w|)^(2) + (arg a -arg w)^(2)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.1|4 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.2|9 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise ILLUSTRATION|110 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|=.......=|z_n|=1, prove that |z_1+z_2+z_3++z_n|=1/(z_1)+1/(z_2)+1/(z_3)++1/(z_n)

If |z_1|=|z_2|=|z_3|=......=|z_n|=1 , then |z_1+z_2+z_3+......+z_n|=

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If |z_1|=2, |z_2|=3, |z_3|=4 and |2z_1+3z_2 + 4z_3|=9 , then value of |8z_2z_3 + 27z_3z_1 + 64z_1z_2|^(1//3) is :

If |z_1|=1, |z_2|=2, |z_3|=3 and |9z_1z_2 + 4z_1z_3 + z_2z_3|=36 , then |z_1+z_2+z_3| is equal to _______.

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z_1|=1,|z_2|=2,|z_3|=3,a n d|9z_1z_2+4z_1z_3+z_2z_3|=12 , then find the value of |z_1+z_2+z_3|dot

If |z-3|=min{|z-1|,|z-5|} , then Re(z) equals to

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).