Home
Class 12
MATHS
Find the value of (i^(592)+i^(590)+i^(5...

Find the value of `(i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))-1` `(1+i)^6+(1-i)^6`

A

`-2`

B

`0`

C

`2`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1, \] we will first simplify the numerator and the denominator. ### Step 1: Factor out the lowest power in the numerator The lowest power in the numerator is \(i^{584}\). We can factor this out: \[ i^{584}(i^{8} + i^{6} + i^{4} + i^{2} + 1). \] ### Step 2: Factor out the lowest power in the denominator The lowest power in the denominator is \(i^{574}\). We can factor this out: \[ i^{574}(i^{8} + i^{6} + i^{4} + i^{2} + 1). \] ### Step 3: Substitute back into the expression Now, substituting these factored forms back into the expression gives us: \[ \frac{i^{584}(i^{8} + i^{6} + i^{4} + i^{2} + 1)}{i^{574}(i^{8} + i^{6} + i^{4} + i^{2} + 1)} - 1. \] ### Step 4: Cancel the common terms The common term \(i^{8} + i^{6} + i^{4} + i^{2} + 1\) cancels out: \[ \frac{i^{584}}{i^{574}} - 1. \] ### Step 5: Simplify the fraction This simplifies to: \[ i^{10} - 1. \] ### Step 6: Calculate \(i^{10}\) We know that \(i^2 = -1\), so we can find \(i^{10}\): \[ i^{10} = (i^2)^5 = (-1)^5 = -1. \] ### Step 7: Substitute back into the expression Now substituting back, we have: \[ -1 - 1 = -2. \] ### Final Answer Thus, the value of the expression is: \[ \boxed{-2}. \] ---

To solve the expression \[ \frac{i^{592} + i^{590} + i^{588} + i^{586} + i^{584}}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} - 1, \] we will first simplify the numerator and the denominator. ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.2|9 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.3|7 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise SLOVED EXAMPLES|15 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Find the value of (i) (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574)) (i) -1 (ii) (1+i)^6+(1-i)^6

Write the value of (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))\ dot

Find the value of i^(4) + i^(5) + i^(6) + i^(7) .

The value of (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))-1\ is a. -1 b. -2 c. -3 d. -4

Find the value of i^(12)+i^(13)+i^(14)+i^(15)

Find the value of (1+ i)^(6) + (1-i)^(6)

Find the value of 1+i^2+i^4+i^6++i^(2n)

The value of (1+i) (1-i^(2)) (1+i^(4))(1-i^(5)) is

the value of ((i^(11)+i^(12)+i^(13)+i^(14) +i^(15)))/((1+i)) is

Find the value of |(1+i)((2+i))/((3+i))|