Home
Class 12
MATHS
The value of i^(1+3+5++(2n+1)) is....

The value of `i^(1+3+5++(2n+1))` is________.

A

`i`

B

`1`

C

`-1`

D

`-i`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( i^{(1 + 3 + 5 + \ldots + (2n + 1))} \), we will follow these steps: ### Step 1: Identify the series The expression \( 1 + 3 + 5 + \ldots + (2n + 1) \) is the sum of the first \( n + 1 \) odd numbers. ### Step 2: Use the formula for the sum of odd numbers The sum of the first \( n \) odd numbers is given by the formula: \[ \text{Sum} = (n + 1)^2 \] Thus, we can express our series as: \[ 1 + 3 + 5 + \ldots + (2n + 1) = (n + 1)^2 \] ### Step 3: Substitute back into the expression Now we substitute this result back into the original expression: \[ i^{(1 + 3 + 5 + \ldots + (2n + 1))} = i^{(n + 1)^2} \] ### Step 4: Simplify \( i^{(n + 1)^2} \) The powers of \( i \) cycle every 4: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) To find \( i^{(n + 1)^2} \), we need to determine \( (n + 1)^2 \mod 4 \). ### Step 5: Analyze \( (n + 1)^2 \mod 4 \) - If \( n + 1 \) is even, then \( (n + 1)^2 \equiv 0 \mod 4 \) and \( i^{(n + 1)^2} = 1 \). - If \( n + 1 \) is odd, then \( (n + 1)^2 \equiv 1 \mod 4 \) and \( i^{(n + 1)^2} = i \). ### Conclusion Thus, we can summarize: - If \( n + 1 \) is even (i.e., \( n \) is odd), then \( i^{(n + 1)^2} = 1 \). - If \( n + 1 \) is odd (i.e., \( n \) is even), then \( i^{(n + 1)^2} = i \). The final answer is: \[ \text{The value of } i^{(1 + 3 + 5 + \ldots + (2n + 1))} \text{ is } \begin{cases} 1 & \text{if } n \text{ is odd} \\ i & \text{if } n \text{ is even} \end{cases} \]

To find the value of \( i^{(1 + 3 + 5 + \ldots + (2n + 1))} \), we will follow these steps: ### Step 1: Identify the series The expression \( 1 + 3 + 5 + \ldots + (2n + 1) \) is the sum of the first \( n + 1 \) odd numbers. ### Step 2: Use the formula for the sum of odd numbers The sum of the first \( n \) odd numbers is given by the formula: \[ ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.2|9 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.3|7 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise SLOVED EXAMPLES|15 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Let f be a real-valued invertible function such that f((2x-3)/(x-2))=5x-2, x!=2. Then value of f^(-1)(13) is________

Let f be a real-valued invertible function such that f((2x-3)/(x-2))=5x-2, x!=2. Then value of f^(-1)(13) is________

If 2tan^2x-5secx=1 is satisfied by exactly seven distinct values of x in [0,((2n+1)pi)/2],n in N , then the greatest value of n is________.

Let f(x)=(x-1)(x-2)(x-3)(x-n),n in N ,a n df(n)=5040. Then the value of n is________

Let f(x)=(x-1)(x-2)(x-3)(x-n),n in N ,a n df(n)=5040. Then the value of n is________

Let f(x)=(x-1)(x-2)(x-3)--(x-n),n in N ,a n df(n)=5040. Then the value of n is________

If f(x) is an odd function, f(1)=3,f(x+2)=f(x)+f(2), then the value of f(3) is________

If f(x) is an odd function, f(1)=3,f(x+2)=f(x)+f(2), then the value of f(3) is________

If L= lim_(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)) , then the value of 1//L is________.

If U_n=int_0^1x^n(2-x)^ndxa n dV_n=int_0^1x^n(1-x)^n dx ,n in N , and if (V_n)/(U_n)=1024 , then the value of n is________