Home
Class 12
MATHS
Find the value of x^4+9x^3+35 x^2-x+4 fo...

Find the value of `x^4+9x^3+35 x^2-x+4` for `x=-5+2sqrt(-4).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x^4 + 9x^3 + 35x^2 - x + 4 \) for \( x = -5 + 2\sqrt{-4} \), we will follow these steps: ### Step 1: Simplify \( x \) Given: \[ x = -5 + 2\sqrt{-4} \] We can simplify \( \sqrt{-4} \): \[ \sqrt{-4} = \sqrt{4} \cdot \sqrt{-1} = 2i \] Thus, we have: \[ x = -5 + 2(2i) = -5 + 4i \] ### Step 2: Find \( x + 5 \) Now, we will find \( x + 5 \): \[ x + 5 = (-5 + 4i) + 5 = 4i \] ### Step 3: Square \( x + 5 \) Next, we will square \( x + 5 \): \[ (x + 5)^2 = (4i)^2 = 16(-1) = -16 \] ### Step 4: Form the quadratic equation From \( (x + 5)^2 = -16 \), we can write: \[ x^2 + 10x + 25 = -16 \] This simplifies to: \[ x^2 + 10x + 41 = 0 \] ### Step 5: Substitute into the polynomial Now we substitute \( x^2 + 10x + 41 = 0 \) into the polynomial \( x^4 + 9x^3 + 35x^2 - x + 4 \). We can express \( x^4 \) and \( x^3 \) in terms of \( x^2 \) and \( x \): 1. From \( x^2 + 10x + 41 = 0 \), we have \( x^2 = -10x - 41 \). 2. To find \( x^3 \), we multiply \( x^2 \) by \( x \): \[ x^3 = x \cdot x^2 = x(-10x - 41) = -10x^2 - 41x \] Substitute \( x^2 \): \[ x^3 = -10(-10x - 41) - 41x = 100x + 410 - 41x = 59x + 410 \] 3. To find \( x^4 \), we multiply \( x^3 \) by \( x \): \[ x^4 = x \cdot x^3 = x(59x + 410) = 59x^2 + 410x \] Substitute \( x^2 \): \[ x^4 = 59(-10x - 41) + 410x = -590x - 2419 + 410x = -180x - 2419 \] ### Step 6: Substitute \( x^4 \) and \( x^3 \) into the polynomial Now we substitute \( x^4 \) and \( x^3 \) into the polynomial: \[ x^4 + 9x^3 + 35x^2 - x + 4 = (-180x - 2419) + 9(59x + 410) + 35(-10x - 41) - x + 4 \] ### Step 7: Simplify the expression Now we simplify: \[ = -180x - 2419 + 531x + 3690 - 350x - 1435 - x + 4 \] Combine like terms: \[ (-180x + 531x - 350x - x) + (-2419 + 3690 - 1435 + 4) \] \[ = 0x + (-2419 + 3690 - 1435 + 4) = -160 \] ### Final Answer Thus, the value of \( x^4 + 9x^3 + 35x^2 - x + 4 \) is: \[ \boxed{-160} \]

To find the value of \( x^4 + 9x^3 + 35x^2 - x + 4 \) for \( x = -5 + 2\sqrt{-4} \), we will follow these steps: ### Step 1: Simplify \( x \) Given: \[ x = -5 + 2\sqrt{-4} \] We can simplify \( \sqrt{-4} \): ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.2|9 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.3|7 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise SLOVED EXAMPLES|15 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

If x= -5 + sqrt(-16) , find the value of x^(4) + 9x^(3) + 35x^(2)-x + 4

Find the value of x - (2-3x)/4+(3-2x)/5=2-x

If x=-5+2sqrt(-4) , find the value of x^4+9x^3+35 x^2-x+4.

If x=-5+2sqrt(-4) , find the value of x^4+9x^3+35 x^2-x+4.

If x=-5+2sqrt(-4) , find the value of x^4+9x^3+35 x^2-x+4.

Using componendo and dividendo, find the value of x if (sqrt(3x+4)+sqrt(3x-5))/(sqrt(3x+4)-sqrt(3x-5))=9 .

If x+1/x=sqrt(5) , find the values of x^2+1/(x^2) and x^4+1/(x^4)

If x=sqrt(-2)-1 find he value of x^4+4x^3+6x^2+4x+9

If |3x | != 2 , what is the value of (9x^2 - 4)/(3x + 2) - (9x^2 - 4)/(3x - 2) ?

Find the value of a, if the division of ax^3+ 9x^2 +4x -10 by x + 3 leaves a remainder 5.