Home
Class 12
MATHS
Express the following complex numbers in...

Express the following complex numbers in `a+i b` form: `((3-2i)(2+3i))/((1+2i)(2-i))` (ii) `(2-sqrt(-25))/(1-sqrt(-16))`

Text Solution

AI Generated Solution

The correct Answer is:
To express the given complex numbers in the form \( a + ib \), we will solve each part step by step. ### Part (i): \[ \frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)} \] **Step 1: Multiply the numerators and denominators.** Numerator: \[ (3 - 2i)(2 + 3i) = 3 \cdot 2 + 3 \cdot 3i - 2i \cdot 2 - 2i \cdot 3i \] \[ = 6 + 9i - 4i - 6(-1) = 6 + 5i + 6 = 12 + 5i \] Denominator: \[ (1 + 2i)(2 - i) = 1 \cdot 2 + 1 \cdot (-i) + 2i \cdot 2 + 2i \cdot (-i) \] \[ = 2 - i + 4i - 2(-1) = 2 - i + 4i + 2 = 4 + 3i \] So, we have: \[ \frac{12 + 5i}{4 + 3i} \] **Step 2: Rationalize the denominator.** Multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(12 + 5i)(4 - 3i)}{(4 + 3i)(4 - 3i)} \] Calculating the denominator: \[ (4 + 3i)(4 - 3i) = 4^2 - (3i)^2 = 16 - 9(-1) = 16 + 9 = 25 \] Calculating the numerator: \[ (12 + 5i)(4 - 3i) = 12 \cdot 4 - 12 \cdot 3i + 5i \cdot 4 - 5i \cdot 3i \] \[ = 48 - 36i + 20i + 15 = 63 - 16i \] So, we have: \[ \frac{63 - 16i}{25} \] **Step 3: Write in the form \( a + ib \).** \[ = \frac{63}{25} - \frac{16}{25}i \] Thus, the final answer for part (i) is: \[ \frac{63}{25} - \frac{16}{25}i \] ### Part (ii): \[ \frac{2 - \sqrt{-25}}{1 - \sqrt{-16}} \] **Step 1: Simplify the square roots.** \[ \sqrt{-25} = 5i \quad \text{and} \quad \sqrt{-16} = 4i \] So, we rewrite the expression as: \[ \frac{2 - 5i}{1 - 4i} \] **Step 2: Rationalize the denominator.** Multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(2 - 5i)(1 + 4i)}{(1 - 4i)(1 + 4i)} \] Calculating the denominator: \[ (1 - 4i)(1 + 4i) = 1^2 - (4i)^2 = 1 - 16(-1) = 1 + 16 = 17 \] Calculating the numerator: \[ (2 - 5i)(1 + 4i) = 2 \cdot 1 + 2 \cdot 4i - 5i \cdot 1 - 5i \cdot 4i \] \[ = 2 + 8i - 5i + 20 = 22 + 3i \] So, we have: \[ \frac{22 + 3i}{17} \] **Step 3: Write in the form \( a + ib \).** \[ = \frac{22}{17} + \frac{3}{17}i \] Thus, the final answer for part (ii) is: \[ \frac{22}{17} + \frac{3}{17}i \] ### Summary of Answers: 1. Part (i): \(\frac{63}{25} - \frac{16}{25}i\) 2. Part (ii): \(\frac{22}{17} + \frac{3}{17}i\)

To express the given complex numbers in the form \( a + ib \), we will solve each part step by step. ### Part (i): \[ \frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)} \] **Step 1: Multiply the numerators and denominators.** ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.3|7 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.4|7 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.1|4 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

Express the following complex numbers in the standard form a+i b :(3-4i)/((4-2i)(1+i))

Express the following complex numbers in the standard form a+i b :((2+i)^3)/(2+3i)

Express the following complex numbers in the standard form a+i b :(3+2i)/(-2+i)

Change the following complex numbers into polar form (1+ 3i)/(1-2i)

Find the conjugates of the following complex number: ((3-2i)(2+3i))/((1+2i)(2-i))

Express the following complex number in the polar form: (i) (1+7i)/(2-i)^2 (ii) (1+3i)/(1-2i)

Express the following complex number in the polar form: (2+6sqrt(3)i)/(5+sqrt(3)i)

Express the following complex numbers in the standard form a+i b :(1+i)(1+2i)

Express the following complex numbers in the standard form a+i b :(1+2i)^(-3)

Express the following complex numbers in the standard form a+i b :1/((2+i)^3)