Home
Class 12
MATHS
If Z is a non-real complex number, then ...

If `Z` is a non-real complex number, then find the minimum value of |`(Imz^5)/(Im^5z)`|

Text Solution

Verified by Experts

The correct Answer is:
`-4`

Let z= a+ ib,
`b ne 0` where Im Z = b
`therefore " " Z^(5) = (a+ib)^(5)`
`= a^(5) + 5a^(4) bi + 10^(3)b^(2)i^(2) + 10a^(2)b^(3)i^(2) + 5ab^(4)i^(4) + i^(5)b^(5)`
`therefore" " Lm z^(5)=5a^(4)b- 10a^(2)b^(3) + b^(5)`
`y= (ImZ^(5))/((ImZ^(5)))=((a)/(5))^(2)-10((a)/(b))^(2)+1`
`= 5[((a)/(b))^(4)-2((a)/(b))^(2)+(1)/(5)]`
`=5[(((a)/(b))^(2)-1)^(2) +(1)/(5)-1]`
`=5(((a)/(b))^(2)-1)^(2)=4`
So, `y_("min")= -4`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.3|7 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.4|7 Videos
  • COMPLEX NUMBERS

    CENGAGE ENGLISH|Exercise EXERCISE3.1|4 Videos
  • CIRCLES

    CENGAGE ENGLISH|Exercise Comprehension Type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos

Similar Questions

Explore conceptually related problems

For any complex number z find the minimum value of |z|+|z-2i|

If z is a complex number, then find the minimum value of |z|+|z-1|+|2z-3|dot

If z is a complex number, then find the minimum value of |z|+|z-1|+|2z-3|dot

For any complex number z , the minimum value of |z|+|z-1|

If z is a complex number such that |z|>=2 then the minimum value of |z+1/2| is

For any complex number z, maximum value of |z|-|z-1| is

If z is a complex number satisfying ∣z 2 +1∣=4∣z∣, then the minimum value of ∣z∣ is

If z is a complex number satisfying |z^(2)+1|=4|z| , then the minimum value of |z| is

If z is any complex number satisfying |z-3-2i|lt=2 then the maximum value of |2z-6+5i| is

If z is any complex number such that |z+4|lt=3, then find the greatest value of |z+1|dot